
Repairing Dimension Hierarchies under Inconsistent
Reclassification

Mónica Caniupán1 and Alejandro Vaisman23

1 Universidad del Bı́o-Bı́o, Chile
mcaniupa@ubiobio.cl

2 Universidad de la República, Uruguay
avaisman@fing.edu.uy

3 Université Libre de Bruxelles

Abstract. On-Line Analytical Processing (OLAP) dimensions are usually mod-
elled as a hierarchical set of categories (thedimension schema), anddimension
instances. The latter consist in a set of elements for each category, and relations
between these elements (denotedrollup). To guarantee summarizability, a dimen-
sion is required to bestrict, that is, every element of the dimension instance must
have a unique ancestor in each of its ancestor categories. Inpractice, elements in a
dimension instance are often reclassified, meaning that their rollups are changed
(e.g., if the current available information is proved to be wrong). After this oper-
ation the dimension may become non-strict. To fix this problem, we propose to
compute a set ofminimal r-repairsfor the new non-strict dimension. Each mini-
mal r-repair is astrict dimension that keeps the result of the reclassification, and
is obtained by performing a minimum number of insertions anddeletions to the
instance graph. We show that, although in the general case finding anr-repair
is NP-complete, for real-world dimension schemas, computing such repairs can
be done in polynomial time. We present algorithms for this, and discuss their
computational complexity.

1 Introduction

Data Warehouses (DWs) integrate data from different sources, also keeping their his-
tory for analysis and decision support [1]. DWs represent data according todimensions
andfacts. The former are modeled as hierarchies of sets of elements (calleddimension
instances), where each element belongs to a category from a hierarchy,or lattice of
categories (called adimension schema). Figure1(a) shows the dimension schema of a
Phone Traffic DWdesigned for an online Chilean phone call company, with dimensions
Time andPhone (complete example in [2]). Figure1(b) shows a dimensioninstancefor
the Phone schema. Here,TCH (Talcahuano),TEM (Temuco) andCCP (Concepción) are
elements of the categoryCity, andIX andVIII are elements ofRegion. The facts stored in
the Phone Traffic DW correspond to the number of incoming and outgoing calls of a
phone number at a given date. The fact table is shown in Figure1(c).

To guarantee summarizability [3,4], a dimension must satisfy some constraints.
First, it must bestrict, that is, every element of a category should reach (i.e., roll-up
to) no more that one element in each ancestor category (for example, the dimension
instance in Figure1 (b) is strict). Second, it must becovering, meaning that every mem-
ber of a dimension level rolls-up to some element in another dimension level. Strict and

2

All

Year

Month

Date

All

Region

AreaCode City

Number

All

Region

AreaCode

Number

City

all

IX VIII

45 41 TCH TEM CCP

N3N2N1

Calls

Number Date In Out

N1 Jan 1,073 0

N2 Jan 1,072 1

N3 Jan 1,075 5

N1 Jan 2,078 0

N2 Jan 2,070 3

N3 Jan 2,075 1

(a) Dimensions schemas (b) Phone dimension instance (c) Fact table

Fig. 1: The Phone Traffic DW (c.f [2])

covering dimensions allow to pre-compute aggregations, which can be used to compute
aggregations at higher category levels, increasing query answering efficiency [5].

Dimensions can be updated to adapt to changes in data sourcesor modifications
to the business rules [6,7], or even due to errors in the original data. Since strictness
is not enforced in current commercial DW systems, after a dimension update is per-
formed, a dimension instance may become non-strict. Considering that organizational
DWs can contain terabytes of data [1], ensuring strictness of dimensions is crucial for
efficient query answering. As an example, suppose that in Figure1, the phone number
N2 was incorrectly classified as belonging to Temuco (TEM) while in fact it belonged
to Concepcion (CCP). The DW administration must re-assignN2 to the correct city, an
operation we denoteReclassification . In the presence of strictness and covering con-
straints, assigningN2 to Concepcion makes the dimension to become non-strict, since
N2 still has 45 as its area code. Thus, while summarizing fact data, we can reach re-
gion IX if we choose the pathNumber→AreaCode→ Region, or regionVIII if the path
is Number→City→Region. To fix this inconsistency, a solution could be to moveN2 to
the area code41. There are, however, situations where the solution is not obvious, as we
show in this paper.

At least two approaches to the reclassification problem could be followed: (a) To
prevent reclassification if we know that it can lead to a non-strict dimension [7]. We
denotethis consistent reclassification. (b) To allow any reclassification andrepair the
updated dimension if it becomes non-strict. Note that, in the general case, the repair
may undo the reclassification, in particular if we are looking for a minimal repair (i.e.,
the repair ‘closest’ to the original dimension, cf. Section3). In this paper we study
approach (b), which captures the case when the user defines a reclassification about
which he/she is absolutely sure. Therefore, the new rollup must be taken for certain, and
a dimension instance, consistent with a set of constraints,must be produced by means of
a (possibly minimal) repair that keeps the reclassification. We refer to these repairs asr-
repairs. The r-repaired dimension instance is obtained fromD by performing insertions
and deletions of edges between elements. We show that in the general case, finding a
minimal r-repair is NP-hard (Section3). We also present an algorithm (Section4) that
obtains anr-repair in polynomial time for the class of dimensions that contain at most
one conflicting level [6] (intuitively, a dimension that can lead to non-strict paths), and
study complexity issues.

3

2 Background and Data Model

A dimension schemaS consists of a pair(C,ր), whereC is a set ofcategories, and
ր is a child/parent relation between categories. The dimension schema can be also
represented with a directed acyclic graph where the vertices correspond to the categories
and the edges to the child/parent relation. The transitive and reflexive closure ofր is
denoted byր∗. There are no shortcuts in the schemas, that is, if ci ր cj there is no
categoryck such thatci ր∗ ck and ck ր∗ cj . Every dimension schema contains a
distinguished top category calledAll which is reachable from all other categories, i.e. for
everyc ∈ C, cր∗All. The leaf categories are called bottom categories.4

A dimension instanceD over a dimension schemaS = (C,ր) is a tuple(M, <),
such that: (i)M is a finite collection of ground atoms of the formc(a) wherec ∈ C and
a is a constant. Ifc(a) ∈ M, a is said to be an element ofc. The constantall is the only
element in categoryAll. Categories are assumed to be disjoint, i.e. ifci(a), cj(a) ∈ M
theni = j. There is a functionCat that maps elements to categories so thatCat(a) = ci
if and only if ci(a) ∈ M. (ii) The relation< contains the child/parent relationships
between elements of different categories, and is compatible with ր: If a < b, then
Cat(a) ր Cat(b). We denote<∗ the reflexive and transitive closure of<.

In what follows we use the term dimension to refer to dimension instances. For each
pair of categoriesci andcj such thatci ր cj there is arollup relation denotedRD(ci, cj)
that consists of the following set of pairs{(a, b) | Cat(a) = ci, Cat(b) = cj anda <∗ b}.
We next define two kinds of constraints a dimension should satisfy.

Definition 1. [Strictness and Covering Constraints [8]] A strictness constraintover a
hierarchy schemaS = (C,ր) is an expression of the formci → cj whereci, cj ∈ C
andci ր

∗ cj . The dimensionD satisfiesthe strictness constraintci → cj if and only if
the rollup relationRD(ci, cj) is strict. Acovering constraintoverS is an expression of
the formci ⇒ cj whereci, cj ∈ C andci ր

∗ cj . The dimensionD satisfiesthe covering
constraintci ⇒ cj if and only if the rollup relationRD(ci, cj) is covering.Σs(S) and
Σc(S) denote, respectively, the set of all possible strictness and covering constraints
over hierarchy schemaS. 2

A dimensionD over an schemaS is inconsistentif it fails to satisfyΣ = Σs(S) ∪
Σc(S). A dimensionD is said to bestrict (covering) if all of its rollup relations are
strict (covering) [3]. Otherwise, the dimension is said to benon-strict(non-covering).
The dimension in Figure1(b) is both covering and strict. Thus, a query asking for the
number of calls grouped byRegion can be computed by using pre-computed aggregations
at categoriesAreaCode or City. This is not the case of dimensionD in Figure2, which is
covering, but not strict (N3 rolls-up to bothIX andVIII in categoryRegion).

Most research and industrial applications of DWs assume strict and covering dimen-
sions [1,9,10]. For these kinds of dimensions, summarization operationsbetween two
categories that are connected in the schema are always correct [3]. In practice, dimen-
sions may be non-strict and non-covering [11,12], which can lead to incorrect results
when summarizing data. We can prevent these errors specifying integrity constraints for
rollup relations [11].

4To simplify the presentation and without loss of generality, we assume that categories do not
have attributes, and schemas have a unique bottom category.

4

all

IX VIII

45 41 TCH TEM CCP

N3N2N1

all

IX VIII

45 41 TCHTEMCCP

N3N2N1

all

IX VIII

45 41 TCHTEMCCP

N3N2N1

all

IX VIII

45 41 TCHTEMCCP

N3N2N1

D D1 D2 D3

Fig. 2: (Non-strict dimension instance (category names areomitted)(D); Repairs of the
dimension (dashed edges were inserted to restore strictness) (D1-D3)

3 Inconsistent Reclassification and r-repairs

The reclassify operator presented in [7] is not defined for every possible dimension.
It allows to reclassify edges of dimensions only if the resulting dimension satisfies
Σ = Σs(S) ∪ Σc(S). When the dimension contains aconflicting level(Definition 2),
a reclassification may leave the dimension inconsistent with respect to strictness, and
therefore the operation is forbidden.

Definition 2. [Conflicting Levels (cf. [13])] Given a dimension instanceD = (M, <)
over a schemaS = (C,ր), a pair of categoriesci and cj such thatci ր cj , a pair
of elementsa, b with Cat(a) = ci andCat(b) = cj . A categoryck such thatcj ր∗ ck is
conflictingwith respect to reclassification, if there exists a categorycm such thatcm ր∗

ci, there is an alternative path betweencm andck not including the edge (ci,cj), anda is
reached by at least one element incm. 2

As an illustration, categoryRegion in Figure1(a) is conflicting with respect to reclas-
sification fromAreaCode to Region or a reclassification fromCity to Region. Consider a
reclassification fromAreaCode to Region, in this case,ci = AreaCode, cj = ck = Region,
andcm = Number. The edges (Number,City) and (City,Region) form an alternative path from
Number to Region not including edge (AreaCode,Region).

In practice, preventing reclassification is not an admissible solution (eg., if the op-
eration is applied to correct erroneous data). Therefore, non-strict dimensions resulting
from the operation must be allowed. Definition3 captures this semantics.

Definition 3. [Reclassify] Given a dimension instanceD = (M, <) over a dimension
schemaS = (C,ր), a pair of categoriesci andcj such thatci ր cj , a pair of elements
a, b with Cat(a) = ci andCat(b) = cj , operatorReclassify(D, ci, cj , a, b) returns a new
dimension instanceDu = (Mu, <u) with Mu = M, and<u= (< \ {(a, c) | (a, c)∈<
andCat(c) = Cj}) ∪ {(a,b)}. 2

For example, the result of applyingReclassify(D, Number, AreaCode, N3, 45) on dimen-
sionD in Figure1(b) is the non-strict dimensionD in Figure2. Since weknowthat the
area code forN3 is 45, wemustperform the reclassification and, in a subsequent step,
repair the updated dimension in order to comply with the strictness constraint.

Thus, if a reclassification according to Definition3 yields a non-strict dimension,
we mustrepair the dimension [8], i.e., perform the necessary changes in order to ob-
tain dimension satisfying the constraints. In particular,from all possible repairs we are

5

interested in finding theminimalone. Intuitively, a minimal repair of a dimension is a
new dimension that satisfies a given set of constraints, and is obtained by applying a
minimum number of insertions and deletions to the original rollup relations. Although
techniques to compute repairs with respect to a set of constraints are well-known in the
field of relational databases [14], they cannot be applied in a DW setting, since it is
not trivial to represent strictness or covering constraints using relational constraints like
functional dependencies [8].

Defining a minimal repair requires a notion ofdistancebetween dimensions: Let
D =(M, <D) andD′ =(M, <D′) be two dimensions over the same schemaS =
(C,ր). The distance betweenD andD′ is defined asdist(D,D′) = |(<D′ r <D) ∪
(<D r <D′)|, i.e. the cardinality of the symmetric difference between the two roll-up
relations [8]. Based on this, the definition of repair is as follows [8]: Given a dimension
D = (M, <) over a schemaS = (C,ր), and a set of constraintsΣ = Σs(S)∪Σc(S),
a repair ofD with respect toΣ is a dimensionD′ = (M′, <′) overS, such thatD′

satisfiesΣ, andM′ = M. A minimal repairof D is a repairD′ such thatdist(D,D′)
is minimal among all the repairs ofD.

Minimal repairs according to [8] may result in dimensions where the reclassification
is undone. If we assume that a reclassification always represents information that is
certain, this semantics is not appropriate. For example, the minimal repairs (as defined
in [8]) for dimensionD in Figure2 are dimensionsD1, D2 andD3. All of them were
obtained fromD by performing insertions and/or deletions of edges. For example,D1

is generated by deleting edge (CCP,VIII) and inserting (CCP,IX). The distances between
the repairs andD are: (a)dist(D,D1) = |(CCP,IX), (CCP,VIII)| = 2; (b)dist(D,D2) =
|(N3,41), (N3,45)| = 2; (c) dist(D,D3) = |(N3,TEM), (N3,CCP)| = 2. Note that dimension
D2 has undone the reclassification, and should not be considered an appropriate repair.

In light of the above, we next study the problem of finding repairs that do not undo
the reclassification. We denote these repairsr-repairs.

3.1 r-repairs

Given a dimensionD, a setR of reclassify operations is calledvalid if the following
holds: for everyReclassify(D, ci, cj , a, b) ∈ R there is noReclassify(D, ci, cj , a, c) ∈
R with c 6= b. In what follows we consider only valid reclassification.

Definition 4. [r-repairs] Given a dimensionD = (M, <) defined over a schemaS =
(C,ր) that is consistent with respect toΣ = Σs(S)∪Σc(S), and a valid set of reclas-
sificationsR, anr-repair for D underR is a dimensionD′ = (M′, <′) defined overS
such that: (i)D′ satisfiesΣ; (ii) M′ = M; and (iii) for everyReclassify(D, ci, cj , a, b) ∈
R, the pair(a, b) ∈<′. Letr-repair (D,R) be the set ofr-repairs for D underR. A min-
imal r-repair D′ for a dimensionD and a set of reclassificationsR is anr-repair such
thatdist(D,D′) is minimal among all ther-repairs in r-repair (D,R). 2

Note that the distance between a dimensionD and anr-repair D′ is bounded by the
size ofD. For the dimension in Figure1(b) and the setR = {Reclassify(D, Number,
AreaCode, N3, 45)}, r-repair (D,R) contains dimensionsD1 andD3 in Figure2.

The existence ofr-repairs cannot be guaranteed if the reclassification set contains
more than one reclassify operation. However, a positive result can be obtained for a set
R containing only one reclassification.

6

All

D

H

GB C

FA

E

all

d1 d2

h1

g1b1 b2 b3 b4 c1 c2 c3

f1a1 a2 a3 a4 a5

e1

all

d1 d2

h1

g1b1 b2 b3 b4 c1 c2 c3

f1a1 a2 a3 a4 a5

e1

(a) Dimension schema (b) DimensionD (c) r-repair of D
Fig. 3: Heuristics

Theorem 1. Let D be a dimension instance over a schemaS with constraintsΣ =
Σs(S)∪Σc(S), and a reclassification setR applied overD, producing a new dimension
Du; the problem of deciding if there exists an r-repairD′ of Du with respect toΣ, such
thatdist(Du,D

′) ≤ k is NP-complete. 2

Theorem 2. Given a dimensionD over a schemaS with constraintsΣ = Σs(S) ∪
Σc(S), and a set of reclassificationR, the problem of deciding ifD′ is a minimalr-
repair of D with respect toΣ is co-NP-complete. 2

The proof of Theorem1 proceeds by reduction from the set covering problem. Theo-
rem2 follows from considering the complement of the problem, that is, deciding wether
or not ther-repair is minimal with respect toΣ andR which, from Theorem1 is NP-
complete.

4 Algorithms for r-repairs

We studyr-repairsfor dimensions containingat most one conflicting level(Definition2)
that becomes inconsistent with respect to strictness aftera reclassify operation. Solving
this problem efficiently we cover a wide range of real-life situations [9,10]. We present
two heuristics and algorithms that find anr-repair for a dimension under reclassification
in polynomial time. These heuristics are such that the distance between ther-repair
obtained and the minimalr-repair is bound. In what follows we assume that after a
reclassification a dimension becomes inconsistent with respect to strictness. Thus, we
can identify the paths that make the dimension non-strict. We denote these pathsnon-
strict.

The first heuristics we propose ensures that when choosing a repair operationwe do
not generate new non-strict paths. Let us consider the dimension schema and instance
in Figure3 (a)-(b). Elementc2 in categoryC is reclassified fromd2 to d1 in categoryD

as indicated in Figure3(b) (dashed edge). The elements incident toc2 area2, a3, and
a5. The non-strict paths are: (i)a2 → b2 → d2, a2 → c2 → d1. (ii) a3 → b3 → d2,
a3 → c2 → d1. (iii) a5 → b4 → d2, a5 → c2 → d1. Elementsb3 andb4 in category
B have no incident edges other thana3 and a5, respectively. Thus, a possible repair

7

All

D

H I

B

K

G

C

F

E

A

all

d1 d2

h1 h2 i1 k1

b1g1 g2f1

c1e1

a1 a2

all

d1 d2

h1 h2 i1 k1

b1g1 g2f1

c1e1

a1 a2

(a) Dimension schema (b) DimensionD (c) r-repair of D

Fig. 4: The dimension schema, instance andr-repair for the Algorithm

operation would delete edges(b3, d2) and(b4, d2), and insert edges(b3, d1) and(b4, d1)
(dashed edges in Figure3(c)). This repair operationdoes not add new non-strict paths.
Conversely,b2 has two incident edges (froma2 and a4), anda4 rolls-up to d2 via c3;
therefore, deleting(b2, d2) and inserting(b2, d1), would produce a violation of strictness,
and the following new non-strict paths:a4 → b2 → d1, a4 → c3 → d2. A solution would
be a repair that changes the parent ofa2 either tob1 (as depicted in Figure3 (c)), to b3,
or to b4. In addition, all edges incident toa2 must also be reclassified if they reachd2
through a path not including the edge(A,B) in the dimension hierarchy. This is the case
of e1 that can be repaired by deleting edge(h1, d2) and inserting(h1, d1) or by moving
e1 to any elementai reachingd2, like a4, as we show in Figure3 (c).

The second heuristics is aimed at guaranteeing that at each step the algorithm chooses
a repair operation that, accomplishing the “no new conflicts” heuristics, requires the
least number of changes.

4.1 Computing ther-repairs

We illustrate the algorithms with the dimension schema and instance in Figure4(a)-(b).
The first algorithmsearchpath() reads the dimension schema from a table storing the
child/parent relation between categories, obtains the conflicting level (CL) and stored
it in variablecat cl, and verifies that the schema has a unique such CL. It also com-
putes the category from where the paths reaching the CL start, and stores it in the vari-
ablecat bottom. For instance, for the child/parent relation of the categories in Figure
4(a), variablecat cl=D sinceD is the CL, and thecat bottom = A. Then, the algorithm
computes the paths of categories that reach the CL, and stores them in the structure
cat list paths. Any update operation involving categories in this structure may leave the
dimension schema non-strict. For the schema in Figure4, cat list pathscontains: [1]:
A → E → F → D. [2]: A → C → G → H → D. [3]: A → B → I → D. Then, Algorithm
searchrepair() in Figure5 applies repair operations over categories in this structure.

Algorithm searchrepair() (Figure5) first verifies if an update operation leaves the
dimension instance non-strict. For this, the listlist inconsistentpathscontaining the
non-strict paths is produced (line 2). If the dimension is non-strict, the algorithm re-

8

stores consistency of every non-strict path on the list. LetReclassify(D, C1, C2, eu, pu)
be the update operation that affects categories incat list pathsand leaves the dimen-
sion non-strict. The algorithm obtains, for everycat bottomelement in the inconsistent
list, the number of paths reachingnew CL (new parent ofeu in CL) andold CL (old
parent in CL) (Lines 5 to 10). If these numbers are equal, it means that there are only
two alternative paths for the correspondingcat bottomelement, and the algorithm tries
to keepnew CL as the ancestor to these paths in the CL (lines 12 to 21). If not, it
means that there are more paths reachingold CL, and the algorithm tries to update the
edge reachingnew CL, since this produces less changes (lines 25 to 26). If not, the
algorithm assignsnew CL to all the paths reachingold CL (lines 28 to 31).

As an illustration, consider the reclassificationReclassify(D, C, G, c1, g2) applied
over the dimension in Figure4(b). The reclassification affects to the bottom element
a1 and thereforelist inconsistentpathscontains the paths: [1]:a1 → e1 → f1 → d1.
[2]: a1 → c1 → g2 → h2 → d2. [3]: a1 → b1 → i1 → d1. The old and new parent
in CL for a1 are:old CL = d1, new CL = d2, and the number of paths reachingd1
and d2 are, respectively, 2 and 1. Since there are more paths reaching the old parent
in CL, the algorithm tries to keepd1 as the ancestor inD for all the conflicting paths.
This operation is possible given that elementh2 does not have other child different from
g2, and also the update is not performed overh2 (validations performed by function
checkchangeto newCL); thus, the algorithm deletes edge (h2, d2) and inserts (h2, d1)
(functionchangenewCL), producing the repair shown in Figure4(c).

Proposition 1. Given a dimensionD over an schemaS, and a set of reclassify opera-
tionsR of size 1. (a) Algorithmsearchrepair() terminates in a finite number of steps.
(b) Algorithmsearchrepair() finds anr-repair for dimensionD.

4.2 Complexity Analysis

Algorithm searchpath(), that captures the hierarchy schema of a dimension, runs in
O(k) with k being the number of paths reaching the conflicting level and starting at
the bottom category. For Algorithmsearchrepair(), the most expensive function is
checkConsistency(), that finds out if the dimension instance becomes inconsistent after
an update, and, in that case, generates the list of inconsistent paths. It needs to verify
that every element at the bottom category reaches a unique element in the CL after an
update. Letn be the number of elements at the bottom category,m the longest path
from the bottom category to the CL, andk the number of alternative paths from the
bottom category to the CL. Note thatm, k andn are all independent values. Then, the
function has to searchk paths forn elements at the bottom category. Thus, the algorithm
runs inO(n ∗ m ∗ k) in a worst case scenario, which implies that all elements in the
bottom category are in conflict after an update, which is quite unlikely. Consider also
that, in general, the number of categories between the bottom and the CL category is
small, as well as the number of alternative paths to the CL category. More than often
the hierarchy schema is a tree (i.e., there is no CL), and in this case the algorithm runs
in O(n ∗ log m ∗ k) (the longest path can be computed inlogm). The rest of the
functions in the algorithm run in lineal time using the list of inconsistent paths, the list
of categories in the hierarchy schema, and the rollup functions.

9

searchrepair()

Structure paths{String element, String category,∗next,∗below};
paths listinconsistentpaths = NULL;
String newCL, old CL, e u, p u, parentchild CL, child CL1, child CL2;
Int cost=0, contsameelements;
1: if checkConsitency() = 0then
2: list inconsistentpaths= nonstrict paths();
3: while (list inconsistentpaths.below6= NULL) do
4: i=0;
5: cont sameelements = findnumberpaths(listinconsistentpaths(i));
6: new CL = find new parentCL(list inconsistentpaths(i),eu);
7: old CL = find old parentCL(list inconsistentpaths(i),newCL);
8: {the parents in the CL before and after the update};
9: cont 1 =numberpathsreachingelement(listinconsistentpaths(i),newCL);
10: cont 2 =numberpathsreachingelement(listinconsistentpaths(i),oldCL);
11: if (cont 1 = cont2) then
12: {Same # of paths reaching the old and new parent in CL,→ try to keep the new parent};
13: child CL1 = find child CL(list inconsistentpaths(i),oldCL);
14: child CL2 = find child CL(list inconsistentpaths(i),newCL);
15: {it captures the element in the category that reach the old(new) parent in CL};
16: if (checkchangeto new CL(child CL1)=1) then
17: {It is possible to change to the new parent in CL};
18: cost = cost + changenew CL(list inconsistentpaths(i),childCL1, newCL);
19: else
20: cost = cost + changeold CL(list inconsistentpaths(i),childCL2, old CL);
21: end if
22: else
23: {# of paths reaching the old parent in CL is greater than the # ofpaths reaching the new parent in CL,→ try

to keep the old parent (second heuristics)};
24: child CL2 = find child CL(list inconsistentpaths(i),newCL);
25: if (checkchangeto old CL(child CL2)=1) then
26: cost = cost + changeold CL(list inconsistentpaths(i),childCL2, old CL);
27: else
28: for j = 1 TO cont2 do
29: child CL1 = find child CL(list inconsistentpaths(i),oldCL);
30: cost = cost + changenew CL(list inconsistentpaths(i),childCL1, newCL);
31: end for
32: end if
33: end if
34: i = i+ cont same elements;
35: move(list inconsistentpaths,i);
36: end while
37: end if

Fig. 5: Generating anr-repair

5 Discussion and Conclusion

Most efforts addressing inconsistency issues in DWs focus in solving inconsistencies
between operational and warehouse data [15,16,17]. No much work has been devoted
to study the inconsistencies that may arise when dimension updates are applied. This
is due probably to the fact that dimensions were assumed to bestatic. Hurtado et al.
showed that dimensions need to be updated when, for instance, changes in the business
rules that lead to the warehouse design occur, or data in the operational sources are
updated [7,6]. In these works, dimension updates guarantee that the dimensions remain
consistent after the updating operations are applied (if there is a risk of inconsistency,
updates are prevented). A similar approach is adopted in [18]. Other approaches to di-
mension updates accept that the changes may leave the updated dimension inconsistent.
Therefore, repairing techniques must be applied in order toguarantee summarizability

10

[4], which is crucial for OLAP operations. Pedersen et al. [12] presented a first ap-
proach to this problem, transforming non-strict into strict dimensions by means of in-
sertion of artificial elements. Caniupán et al. present a logic programming approach to
repair dimensions that are inconsistent with respect to a set of constraints [8,19]. Al-
though important to gain insight into the problem of repairing inconsistent dimensions,
and containing some interesting theoretical results, froma practical point of view, the
approach presented in [8,19] would be computationally expensive in real-world cases.
Besides, DW administrators and developers are not acquainted with logic programs.
Moreover, for the specific case of reclassification, the workin [8,19] only deal with
repairs that may undo the update. On the contrary, ther-repairswe present in this paper
do not undo the reclassification. Finally, the minimal repairs obtained in [8,19] could
lead to rollup functions that do not make sense in the real world (e.g., relating dimen-
sion members that are not actually related in any way). Following a different approach,
we propose efficient algorithms that lead to consistent dimensions (although not nec-
essarily minimal with respect to the distance function), and where undesired solutions
could be prevented.

We have shown that, in general, findingr-repairs for dimension instances is NP-
complete. However, we also showed that in practice, computing r-repairs can be done
in polynomial time when the set of updates contains only one reclassification, and the
dimension schema has at most one conflicting level. We have explored algorithms to
computer-repairs for this class of dimension schemas, and discussed their computa-
tional complexity, being in a worst case scenario of orderO(n ∗ m ∗ k), where the
key term isn, the number of elements in the bottom level affected by the inconsisten-
cies. We would like to remark the fact that in the algorithms presented in this paper,
for the sake of generality, we did not include the possibility of preventing rollups that
could make no sense in practice. However, it is straightforward to enhance thesearch-
repair algorithm to consider only repairs that are acceptable by the user. At least two
approaches can be followed here: to prioritize the rollup functions (as, for example, is
proposed in [20]), or even to define some rollups to be fixed (and therefore, not allowed
to be changed). Of course, in the latter case, it may be the case where a minimalr-repair
does not exist. We leave this discussion as future work, as well as the experimentation
of the algorithms in real-world data warehouses.

Acknowledgements:This project was partially funded by FONDECYT, Chile grant
number 11070186. Part of this research was done during visitof Alejandro Vaisman
to University del Bı́o-Bı́o in 2010. Currently, Mónica Caniupán is funded by DIUBB
110115 2/R. A. Vaisman has been partially funded by LACCIR project LACR-FJR-
R1210LAC004.

References
1. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousingand OLAP Technology. SIG-

MOD Record26 (1997) 65–74
2. Bertossi, L., Bravo, L., Caniupán, M.: Consistent queryanswering in data warehouses. In:

AMW. (2009)
3. Hurtado, C., Gutierrez, C., Mendelzon, A.: Capturing Summarizability with Integrity Con-

straints in OLAP. ACM Transacations on Database Systems30 (2005) 854–886
4. Lenz, H., Shoshani, A.: Summarizability in OLAP and Statistical Data Bases. In: SSDBM.

(1997) 132–143

11

5. Rafanelli, M., Shoshani, A.: STORM: a Statistical ObjectRepresentation Model. In: SS-
DBM. (1990) 14–29

6. Hurtado, C., Mendelzon, A., Vaisman, A.: Maintaining Data Cubes under Dimension Up-
dates. In: ICDE. (1999) 346–355

7. Hurtado, C., Mendelzon, A., Vaisman, A.: Updating OLAP Dimensions. In: DOLAP. (1999)
60–66

8. Caniupán, M., Bravo, L., Hurtado, C.: A logic programming approach for repairing inconsis-
tent dimensions in data warehouses. Submitted to Data and Knowledge Engineering (2010)

9. Dodge, G., Gorman, T.: Essential Oracle8i Data Warehousing: Designing, Building, and
Managing Oracle Data Warehouses (with Website). John Wiley& Sons, Inc. (2000)

10. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional
Modeling. John Wiley & Sons, Inc. (2002)

11. Hurtado, C., Mendelzon, A.: Reasoning about Summarizability in Heterogeneous Multidi-
mensional Schemas. In: ICDT. (2001) 375–389

12. Pedersen, T., Jensen, C., Dyreson, C.: Extending Practical Pre-Aggregation in On-Line An-
alytical Processing. In: VLDB. (1999) 663–674

13. Vaisman, A.: Updates, View Maintenance and Materialized Views in Multidimnensional
Databases. PhD thesis, Universidad de Buenos Aires (2001)

14. Bertossi, L.: Consistent query answering in databases.ACM Sigmod Record35 (2006)
68–76

15. Zhuge, Y., Garcia-Molina, H., Wiener, J.L.: Multiple View Consistency for Data Warehous-
ing. In: ICDE. (1997) 289–300

16. Gupta, H., Mumick, I.S.: Selection of Views to Materialize Under a Maintenance Cost
Constraint. In: ICDT. (1999) 453–470

17. Schlesinger, L., Lehner, W.: Extending Data Warehousesby Semiconsistent Views. In:
DMDW. (2002) 43–51

18. Letz, C., Henn, E.T., Vossen, G.: Consistency in Data Warehouse Dimensions. In: IDEAS.
(2002) 224–232

19. Bravo, L., Caniupán, M., Hurtado, C.: Logic programs for repairing inconsistent dimensions
in data warehouses. In: AMW. (2010)

20. Espil, M.M., Vaisman, A., Terribile, L.: Revising data cubes with exceptions: a rule-based
perspective. In: DMDW. (2002) 72–81

