Repairing Dimension Hierarchies under Inconsistent
Reclassification

Monica Caniupahand Alejandro Vaismai?

1 Universidad del Bio-Bio, Chile
ncani upa@ibi obi o. cl
2 Universidad de la Replblica, Uruguay
avai sman@ i ng. edu. uy
3 Université Libre de Bruxelles

Abstract. On-Line Analytical Processing (OLAP) dimensions are usualod-
elled as a hierarchical set of categories (@mension schemaanddimension
instancesThe latter consist in a set of elements for each categodyrelations
between these elements (denat@tlip). To guarantee summarizability, a dimen-
sion is required to betrict, that is, every element of the dimension instance must
have a unigue ancestor in each of its ancestor categoripsadtice, elements in a
dimension instance are often reclassified, meaning thatrifiRips are changed
(e.g., if the current available information is proved to bmg). After this oper-
ation the dimension may become non-strict. To fix this pnobleve propose to
compute a set ahinimal r-repairsfor the new non-strict dimension. Each mini-
mal r-repair is astrict dimension that keeps the result of the reclassification, and
is obtained by performing a minimum number of insertions delgtions to the
instance graph. We show that, although in the general cadmdiranr-repair

is NP-complete, for real-world dimension schemas, compgusuch repairs can
be done in polynomial time. We present algorithms for thig] discuss their
computational complexity.

1 Introduction

Data Warehouses (DWSs) integrate data from different sey@eo keeping their his-
tory for analysis and decision suppot}.[DWSs represent data accordingdonensions
andfacts The former are modeled as hierarchies of sets of elemeaiteqdcdimension
instance} where each element belongs to a category from a hieraocHgttice of
categories (called dimension schemaFigurel(a) shows the dimension schema of a
Phone Traffic D\designed for an online Chilean phone call company, with disrans
Time andphone (complete example in2]). Figure 1(b) shows a dimensioimstancefor
the Phone schema. HemgH (Talcahuano)TEM (Temuco) andccp (Concepcion) are
elements of the categonyy, andix andviil are elements ategion. The facts stored in
the Phone Traffic DW correspond to the number of incoming andaing calls of a
phone number at a given date. The fact table is shown in Fitfa)e

To guarantee summarizabilityd i], a dimension must satisfy some constraints.
First, it must bestrict, that is, every element of a category should reach (i.d-uml
to) no more that one element in each ancestor category (imple, the dimension
instance in Figuré (b) is strict). Second, it must m®vering meaning that every mem-
ber of a dimension level rolls-up to some element in anotheedsion level. Strict and

Al Al | Calls |

‘ ‘ Number| Date [In|Out
Ye‘ar Region N, [Jan1,073| 0
N, [Jan 1,072| 1
Month A Ns |Jdan 1,075| 5
‘ AreaCode City N, |Jan2,078| 0
Date \/ N; Jan2,070| 3
Number N3 [Jan 2,075 1

(a) Dimensions schemas (b) Phone dimension instance (t)dkde

Fig. 1: The Phone Traffic DW (c.2])

covering dimensions allow to pre-compute aggregationglwtan be used to compute
aggregations at higher category levels, increasing quesyering efficiency9).

Dimensions can be updated to adapt to changes in data sarrosesdifications
to the business rule$/7], or even due to errors in the original data. Since stricdnes
is not enforced in current commercial DW systems, after aedision update is per-
formed, a dimension instance may become non-strict. Cerisgl that organizational
DWs can contain terabytes of datg,[ensuring strictness of dimensions is crucial for
efficient query answering. As an example, suppose that iaréiy the phone number
N> was incorrectly classified as belonging to Temuten) while in fact it belonged
to ConcepciongcpP). The DW administration must re-assig\f» to the correct city, an
operation we denot&eclassification. In the presence of strictness and covering con-
straints, assigning, to Concepcion makes the dimension to become non-striate sin
No still hasss as its area code. Thus, while summarizing fact data, we cachree-
gionix if we choose the patkumber—-areaCode» region, or regiorviil if the path
is Numbercity —region. To fix this inconsistency, a solution could be to meyé¢o
the area coder. There are, however, situations where the solution is naibels, as we
show in this paper.

At least two approaches to the reclassification problemd:belfollowed: (a) To
prevent reclassification if we know that it can lead to a nwittsdimension f]. We
denotethis consistent reclassificatiofb) To allow any reclassification ardpair the
updated dimension if it becomes non-strict. Note that, edkneral case, the repair
may undo the reclassification, in particular if we are logiKiar a minimal repair (i.e.,
the repair ‘closest’ to the original dimension, cf. Secti®)n In this paper we study
approach (b), which captures the case when the user defiredaagsification about
which he/she is absolutely sure. Therefore, the new rollugtioe taken for certain, and
a dimension instance, consistent with a set of constraimist be produced by means of
a (possibly minimal) repair that keeps the reclassificatida refer to these repairs s
repairs The r-repaired dimension instance is obtained ff@ioy performing insertions
and deletions of edges between elements. We show that iretiera case, finding a
minimal r-repairis NP-hard (SectioB). We also present an algorithm (Secti@ythat
obtains amr-repair in polynomial time for the class of dimensions that contdimast
one conflicting level §] (intuitively, a dimension that can lead to non-strict pgttand
study complexity issues.

2 Background and Data Model

A dimension schem& consists of a pai(C,), where(is a set ofcategoriesand

' is a child/parent relation between categories. The dinoenschema can be also
represented with a directed acyclic graph where the vertiogrespond to the categories
and the edges to the child/parent relation. The transitideraflexive closure of” is
denoted by ”*. There are no shortcuts in the schemtmst is, ifc; ,” ¢; there is no
categoryc, such thate; ,* ¢, ande, 7 ¢;. Every dimension schema contains a
distinguished top category calledwhich is reachable from all other categories, i.e. for
everyc € C, ¢ /all. The leaf categories are called bottom categdties.

A dimension instanc® over a dimension scheng& = (C, /) is a tuple(M, <),
such that: (iyM is a finite collection of ground atoms of the forfa) wherec € C and
ais a constant. It(a) € M, a is said to be an element ef The constanii is the only
element in category. Categories are assumed to be disjoint, i.e; (&), ¢;(a) € M
theni = j. There is a functiorat that maps elements to categories so thdt) = c;
if and only if ¢;(a) € M. (ii) The relation< contains the child/parent relationships
between elements of different categories, and is comgatifth ~*: If a < b, then
cat(a) * cat(b). We denote<* the reflexive and transitive closure af

In what follows we use the term dimension to refer to dimengigtances. For each
pair of categories; andc; such that, , ¢; there is aollup relation denote®p (c;, c;)
that consists of the following set of paif$a,b) | cat(a) = ¢;, cat(b) = ¢; anda <* b}.
We next define two kinds of constraints a dimension shouidfgat

Definition 1. [Strictness and Covering Constraing][A strictness constrainbver a
hierarchy schem& = (C,) is an expression of the for@ — c¢; wherec;,c; € C
andc; * ¢;. The dimensiorD satisfieghe strictness constraist — c; if and only if
the rollup relatiorRp (c;, ¢;) is strict. Acovering constrainbvers is an expression of
the forme; = ¢; whereg;, ¢; € C ande; 7 ¢;. The dimensiorD satisfiesghe covering
constraint; = ¢; if and only if the rollup relatiorRp (c;, ¢;) is covering.Xs(S) and
Y.(S) denote, respectively, the set of all possible strictnesscawering constraints
over hierarchy schemé.]

A dimensionD over an schem& is inconsistentf it fails to satisfy > = X,(S) U
Y.(S). A dimensionD is said to bestrict (covering if all of its rollup relations are
strict (covering) B]. Otherwise, the dimension is said to ben-strict(non-covering.
The dimension in Figuré(b) is both covering and strict. Thus, a query asking for the
number of calls grouped jegion can be computed by using pre-computed aggregations
at categoriesreacode OF city. This is not the case of dimensidnin Figure2, which is
covering, but not strict\; rolls-up to bothix andviii in categoryregion).

Most research and industrial applications of DWs assun atid covering dimen-
sions [L,9,10]. For these kinds of dimensions, summarization operati@mt&een two
categories that are connected in the schema are alwaystf3jcdn practice, dimen-
sions may be non-strict and non-coveridg,[L2], which can lead to incorrect results
when summarizing data. We can prevent these errors spagifyegrity constraints for
rollup relations 11].

“To simplify the presentation and without loss of generality assume that categories do not
have attributes, and schemas have a unique bottom category.

Fig. 2: (Non-strict dimension instance (category name®anrited)(D); Repairs of the
dimension (dashed edges were inserted to restore stisdtfizsDs)

3 Inconsistent Reclassification and r-repairs

The reclassify operator presented i) {s not defined for every possible dimension.
It allows to reclassify edges of dimensions only if the réagl dimension satisfies
X = X4(S) U X.(S). When the dimension containscanflicting level(Definition 2),

a reclassification may leave the dimension inconsisterit weispect to strictness, and
therefore the operation is forbidden.

Definition 2. [Conflicting Levels (cf. L3])] Given a dimension instanc® = (M, <)
over a schem& = (C,), a pair of categories; andc; such that; ,* ¢;, a pair
of elements, b with cat(a) = ¢; andcat(b) = ¢;. A categoryc;, such that; 7* ¢ is
conflictingwith respect to reclassification, if there exists a categgrguch that,,, 7*
ci, there is an alternative path betwegnandc;, not including the edge{,c;), anda is
reached by at least one element,in O

As an illustration, categoryegion in Figure 1(a) is conflicting with respect to reclas-
sification fromareacode t0 Region Or a reclassification frongity to Region. Consider a
reclassification fronireaCode t0 Region, in this caseg; = AreaCode, ¢j = cp = Region,
andc,, = Number. The edgesNumber,city) and City,Region) form an alternative path from
Number t0 Region NOt including edgeateacode,Region).

In practice, preventing reclassification is not an admissiblution (eg., if the op-
eration is applied to correct erroneous data). Therefane;strict dimensions resulting
from the operation must be allowed. DefinitiBrtaptures this semantics.

Definition 3. [Reclassify] Given a dimension instanfe= (M, <) over a dimension
schemaS = (C,), a pair of categorieg andc; such that; ,” ¢;, a pair of elements
a, b With cat(a) = ¢; andcat(b) = c;, operatorReclassify(D, c;,cj,a,b) returns a new
dimension instanc®,, = (M,,, <,,) with M,, = M, and<,= (< \ {(a,¢) | (a, c)e<
andcat(c) = C’j}) U {(ab)}. O

For example, the result of applyidtgclassify (D, Number, AreaCode, N3, 45) on dimen-
sionD in Figurel(b) is the non-strict dimensioP in Figure2. Since weknowthat the
area code fofVs is 45, we mustperform the reclassification and, in a subsequent step,
repair the updated dimension in order to comply with thestess constraint.

Thus, if a reclassification according to DefinitiBryields a non-strict dimension,
we mustrepair the dimension§], i.e., perform the necessary changes in order to ob-
tain dimension satisfying the constraints. In particuiemn all possible repairs we are

interested in finding theninimal one. Intuitively, a minimal repair of a dimension is a
new dimension that satisfies a given set of constraints, swdtained by applying a
minimum number of insertions and deletions to the origindilip relations. Although
technigues to compute repairs with respect to a set of aingtrare well-known in the
field of relational databased4], they cannot be applied in a DW setting, since it is
not trivial to represent strictness or covering constsairsing relational constraints like
functional dependencie8]f

Defining a minimal repair requires a notion distancebetween dimensions: Let
D =(M,<p) andD’ = (M, <p-) be two dimensions over the same schefna=
(C, /). The distance betweeh andD’ is defined aglist(D,D’) = |(<pr \ <p) U
(<p ~ <pr)|, i.e. the cardinality of the symmetric difference betwes two roll-up
relations B]. Based on this, the definition of repair is as follov@ [Given a dimension
D = (M, <) overaschem& = (C,), and a set of constrains = X,(S) U X.(S),

a repair ofD with respect toX is a dimensiorD’ = (M’, <) overS, such thatD’
satisfiesY, and M’ = M. A minimal repairof D is a repairD’ such thatlist(D, D’)
is minimal among all the repairs @3.

Minimal repairs according td8] may result in dimensions where the reclassification
is undone. If we assume that a reclassification always reptesnformation that is
certain, this semantics is not appropriate. For exampéentimimal repairs (as defined
in [8]) for dimensionD in Figure2 are dimension®;, D, andDs. All of them were
obtained fromD by performing insertions and/or deletions of edges. Fommie, D
is generated by deleting edgedrviil) and inserting€cprix). The distances between
the repairs an® are: (a)ist(D, D) = |(CCRIX), (CCRVIN)| = 2; (b) dist(D, D3) =
|(N3,41), (N3,45) = 2; (C) dist(D, Ds) = |(Ns,TEM), (N3,CCP)| = 2. Note that dimension
D> has undone the reclassification, and should not be condiderappropriate repair.

In light of the above, we next study the problem of finding fiepthat do not undo
the reclassification. We denote these repaiepairs.

3.1 r-repairs

Given a dimensiorD, a setR of reclassify operations is calladlid if the following
holds: for everyReclassify(D, ci, cj,a,b) € R there is noReclassify(D, c;, cj,a,c) €
‘R with ¢ # b. In what follows we consider only valid reclassification.

Definition 4. [r-repairs] Given a dimensio® = (M, <) defined over a schem&a =
(C, M that is consistent with respect 9 = X (S) U X(S), and a valid set of reclas-
sificationsR, anr-repair for D underR is a dimensiorD’ = (M’, <’) defined oveS
such that: (i)D’ satisfiest; (i) M’ = M; and (iii) for everyReclassify(D, ¢;, c;,a,b) €
R, the pair(a,b) €<’. Letr-repair (D, R) be the set of-repairsfor D underR. A min-
imal r-repair D’ for a dimensiorD and a set of reclassificatiof& is anr-repair such
thatdist(D, D’) is minimal among all the-repairsin r-repair(D, R). |

Note that the distance between a dimengiband anr-repair D’ is bounded by the
size of D. For the dimension in Figur&b) and the seR = {Reclassify(D, Number,
AreaCode, N3, 45) }, r-repair (D, R) contains dimensior®; andD; in Figure2.

The existence of-repairs cannot be guaranteed if the reclassification set contains
more than one reclassify operation. However, a positivaltrean be obtained for a set
‘R containing only one reclassification.

(a) Dimension schema (b) Dimensi@h (c) r-repair of D
Fig. 3: Heuristics

Theorem 1. Let D be a dimension instance over a schefhaith constraintsy =
Ys(S)UX.(S), and areclassification sRtapplied ovefD, producing a new dimension
D..; the problem of deciding if there exists an r-reg@irof D,, with respect ta¥, such
thatdist(D,,D’) < k is NP-complete. O

Theorem 2. Given a dimensiorD over a schem& with constraintsy = X (S) U
X.(8), and a set of reclassificatioR, the problem of deciding iD’ is a minimalr-
repair of D with respect ta¥' is co-NP-complete.]

The proof of Theorer proceeds by reduction from the set covering problem. Theo-
rem2 follows from considering the complement of the problemt thadeciding wether
or not ther-repair is minimal with respect t&@ andR which, from Theorent is NP-
complete.

4 Algorithms for r-repairs

We studyr-repairsfor dimensions containingt most one conflicting levéDefinition 2)
that becomes inconsistent with respect to strictnessafteclassify operation. Solving
this problem efficiently we cover a wide range of real-lifeiations P,10]. We present
two heuristics and algorithms that find arepair for a dimension under reclassification
in polynomial time. These heuristics are such that the dgstebetween therepair
obtained and the minimatrepair is bound. In what follows we assume that after a
reclassification a dimension becomes inconsistent withewtso strictness. Thus, we
can identify the paths that make the dimension non-striet.déhote these patih®n-
strict.

The first heuristics we propose ensures that when chooskggaroperationve do
not generate new non-strict pathset us consider the dimension schema and instance
in Figure3 (a)-(b). Element; in categoryc is reclassified frona, to d; in categoryp
as indicated in Figur8(b) (dashed edge). The elements incidenist@reas, as, and
as. The non-strict paths are: (A — by — dg, aa —> co — di. (ii) a3 — by — do,
a3 — co — di. (iii) a5 = by — do, a5 — co — di. Elementss andby in category
B have no incident edges other thanand as, respectively. Thus, a possible repair

All

(a) Dimension schema (b) Dimensi@n (c) r-repair of D

Fig. 4: The dimension schema, instance amdpair for the Algorithm

operation would delete edgés;, d2) and(by, d2), and insert edge®s, di) and(by, d1)
(dashed edges in FiguBéc)). This repair operatiodoes not add new non-strict paths
Converselyp, has two incident edges (from anda,), anday rolls-up tods via cs;
therefore, deletingp,, d2) and insertindb., d1), would produce a violation of strictness,
and the following new non-strict pathg: — by — dq, a4 — ¢35 — do. A solution would
be a repair that changes the parenioéither ton; (as depicted in Figurd (c)), tobs,
or tobs. In addition, all edges incident t@ must also be reclassified if they reach
through a path not including the ed@es) in the dimension hierarchy. This is the case
of e; that can be repaired by deleting edge, d2) and insertingh;, d;) or by moving
e1 to any elemend; reachingi, like a4, as we show in Figura (c).

The second heuristics is aimed at guaranteeing that at tsgethe algorithm chooses
a repair operation that, accomplishing the “no new conflibeuristics, requires the
least number of changes.

4.1 Computing ther-repairs

We illustrate the algorithms with the dimension schema asthince in Figuréd(a)-(b).

The first algorithmsearchpath() reads the dimension schema from a table storing the
child/parent relation between categories, obtains thdlictng level (CL) and stored

it in variablecat.cl, and verifies that the schema has a unique such CL. It also com-
putes the category from where the paths reaching the CL, atadtstores it in the vari-
able catbottom For instance, for the child/parent relation of the categgomn Figure
4(a), variablecat.cl=D sinceb is the CL, and theatbottom = A Then, the algorithm
computes the paths of categories that reach the CL, andsstoeen in the structure
catlist_paths Any update operation involving categories in this stroetmay leave the
dimension schema non-strict. For the schema in Figuoat.list_pathscontains: [1]:
A—E—F—D[2:A—c—6—H—D[3]:A— B — 1 — D Then, Algorithm
searchrepair() in Figure5 applies repair operations over categories in this strectur

Algorithm searchrepair() (Figure5) first verifies if an update operation leaves the

dimension instance non-strict. For this, the list_inconsistenipathscontaining the
non-strict paths is produced (line 2). If the dimension is4strict, the algorithm re-

stores consistency of every non-strict path on the list. Refassify (D, c1,Ca, ey, p,,)

be the update operation that affects categoriesairist_pathsand leaves the dimen-
sion non-strict. The algorithm obtains, for eveat bottomelement in the inconsistent
list, the number of paths reachimgw_C'L (new parent ot,, in CL) andold-C'L (old
parent in CL) (Lines 5 to 10). If these numbers are equal, amsehat there are only
two alternative paths for the correspondaad bottomelement, and the algorithm tries
to keepnew_CL as the ancestor to these paths in the CL (lines 12 to 21). |finot
means that there are more paths reachidgC L, and the algorithm tries to update the
edge reachingew_CL, since this produces less changes (lines 25 to 26). If net, th
algorithm assignaew_CL to all the paths reachingd_C'L (lines 28 to 31).

As an illustration, consider the reclassificati®aclassify(D, c,,c1,95) applied
over the dimension in Figuré(b). The reclassification affects to the bottom element
a; and therefordist_inconsistenfpathscontains the paths: [1}; — e; — i — di.
[2]: a1 = ¢1 — g2 — hg — do. [3]: a1 — by — i1 — di. The old and new parent
in CL for a; are:old_CL = di, new_CL = dg, and the number of paths reachiing
andd, are, respectively, 2 and 1. Since there are more paths repthe old parent
in CL, the algorithm tries to kee@ as the ancestor in for all the conflicting paths.
This operation is possible given that elemendoes not have other child different from
g4, and also the update is not performed owgi(validations performed by function
checkchangeto_new CL); thus, the algorithm deletes edge,(d2) and insertsp, d;)
(functionchangenew CL), producing the repair shown in Figudéc).

Proposition 1. Given a dimensiorD over an schem&, and a set of reclassify opera-
tionsR of size 1. (a) Algorithnsearchrepair() terminates in a finite number of steps.
(b) Algorithm searchrepair() finds anr-repair for dimensiorD.

4.2 Complexity Analysis

Algorithm searchpath(), that captures the hierarchy schema of a dimension, runs in
O(k) with k being the number of paths reaching the conflicting level dadisg at
the bottom category. For Algorithreearchrepair(), the most expensive function is
checkConsistenct), that finds out if the dimension instance becomes incomgisféer

an update, and, in that case, generates the list of incensisaths. It needs to verify
that every element at the bottom category reaches a unigaeet in the CL after an
update. Letn be the number of elements at the bottom categaryhe longest path
from the bottom category to the CL, adthe number of alternative paths from the
bottom category to the CL. Note that, k£ andn are all independent values. Then, the
function has to seardhpaths fom elements at the bottom category. Thus, the algorithm
runs inO(n = m * k) in a worst case scenario, which implies that all elementsén t
bottom category are in conflict after an update, which isequitlikely. Consider also
that, in general, the number of categories between theadttd the CL category is
small, as well as the number of alternative paths to the Cégmat. More than often
the hierarchy schema is a tree (i.e., there is no CL), andgrctise the algorithm runs
in O(n * log m * k) (the longest path can be computedlag m). The rest of the
functions in the algorithm run in lineal time using the ligtioconsistent paths, the list
of categories in the hierarchy schema, and the rollup fansti

searchrepair()

Structure path§String element, String categorsynext, xbelow};

paths listinconsistenipaths = NULL;

String newCL, old_CL, e_u, p.u, parenichild_CL, child_CL1, childCL2;
Int cost=0, confsameelements;

1: if checkConsitency() = Ghen

2 list_inconsistenipaths= noostrict paths();

3 while (list_inconsistenipaths.below# NULL) do

4 i=0;

5: contsameelements = finchumberpaths(listinconsistentpaths(i));

6: new.CL = find_new.parentCL(list_inconsistenpaths(i),eu);

7. old_CL = find_old_parentCL (list_inconsistenipaths(i),newCL);

8 {the parents in the CL before and after the upglate

9: cont1 =numberpathsreachingelement(listinconsistenpaths(i),newCL);

10: cont2 =numbetrpathsreachingelement(listinconsistentpaths(i),oldCL);

11: if (cont1 = cont2) then

12: {Same # of paths reaching the old and new parent in-Gliry to keep the new pareht

13: child_CL1 = find_child_CL (list_inconsistenipaths(i),oldCL);

14: child_CL2 = find_child_CL (list_inconsistenipaths(i),newCL);

15: {it captures the element in the category that reach the olg(parent in CL};

16: if (checkchangeto_new.CL(child_-CL1)=1)then

17: {Itis possible to change to the new parent in}CL

181 cost = cost + changerew.CL (list_inconsistenpaths(i),childCL1, newCL);

19: else

20: cost = cost + changeld_CL (list_inconsistenpaths(i),childCL2, old CL);

21: end if

22: else

23: {# of paths reaching the old parent in CL is greater than thepéthfs reaching the new parent in Gk, try
to keep the old parent (second heurist]¢s)

24 child_CL2 = find_child_CL (list_inconsistenipaths(i),newCL);

25: if (checkchangeto_old_CL(child_CL2)=1)then

26: cost = cost + changeld_CL (list_inconsistenpaths(i),childCL2, old CL);

27 else

28: for j = 1 TO cont2 do

29: child_CL1 = find_child_CL (list_inconsistenipaths(i),oldCL);

30: cost = cost + changrew.CL (list_inconsistenpaths(i),childCL1, new.CL);

31: end for

32: end if

33: end if

34: 1 = 1+ cont_same_elements;

35: move(listinconsistenpaths, i);

36: endwhile

37: end if

Fig. 5: Generating anrepair

5 Discussion and Conclusion

Most efforts addressing inconsistency issues in DWs foausolving inconsistencies
between operational and warehouse dagl6,17]. No much work has been devoted
to study the inconsistencies that may arise when dimengidates are applied. This
is due probably to the fact that dimensions were assumed &tatie. Hurtado et al.

showed that dimensions need to be updated when, for instelmaeges in the business
rules that lead to the warehouse design occur, or data inpgheational sources are
updated7,6]. In these works, dimension updates guarantee that thendiimes remain

consistent after the updating operations are applied €ifetlis a risk of inconsistency,
updates are prevented). A similar approach is adoptetidin Qther approaches to di-
mension updates accept that the changes may leave the dddatnsion inconsistent.

Therefore, repairing techniques must be applied in ordgurantee summarizability

10

[4], which is crucial for OLAP operations. Pedersen et &P] [presented a first ap-
proach to this problem, transforming non-strict into $tdionensions by means of in-
sertion of artificial elements. Caniupan et al. presengilprogramming approach to
repair dimensions that are inconsistent with respect td afssnstraints $,19. Al-
though important to gain insight into the problem of repajrinconsistent dimensions,
and containing some interesting theoretical results, faopnactical point of view, the
approach presented i8,19 would be computationally expensive in real-world cases.
Besides, DW administrators and developers are not acqahinith logic programs.
Moreover, for the specific case of reclassification, the work3,19] only deal with
repairs that may undo the update. On the contrary;-thpairswe present in this paper
do not undo the reclassification. Finally, the minimal repabtained in §,19] could
lead to rollup functions that do not make sense in the realdnerg., relating dimen-
sion members that are not actually related in any way). atig a different approach,
we propose efficient algorithms that lead to consistent dsions (although not nec-
essarily minimal with respect to the distance function)j amere undesired solutions
could be prevented.

We have shown that, in general, findingepairs for dimension instances is NP-
complete. However, we also showed that in practice, comgutiepairs can be done
in polynomial time when the set of updates contains only @wtassification, and the
dimension schema has at most one conflicting level. We hgpimred algorithms to
computer-repairs for this class of dimension schemas, and discussed theipatam
tional complexity, being in a worst case scenario of or@én x m x k), where the
key term isn, the number of elements in the bottom level affected by tensisten-
cies. We would like to remark the fact that in the algorithmssented in this paper,
for the sake of generality, we did not include the possipilit preventing rollups that
could make no sense in practice. However, it is straightfodto enhance thgearch-
repair algorithm to consider only repairs that are acceptable byutker. At least two
approaches can be followed here: to prioritize the rollugcfions (as, for example, is
proposed in2Q]), or even to define some rollups to be fixed (and thereforealmved
to be changed). Of course, in the latter case, it may be tleevdlasre a minimat-repair
does not exist. We leave this discussion as future work, #isas¢he experimentation
of the algorithms in real-world data warehouses.

Acknowledgements:This project was partially funded by FONDECYT, Chile grant
number 11070186. Part of this research was done duringofigdejandro Vaisman
to University del Bio-Bio in 2010. Currently, Ménica Gapan is funded by DIUBB
110115 2R. A. Vaisman has been partially funded by LACCIR project LREJIR-
R1210LACO004.

References

1. Chaudhuri, S., Dayal, U.: An Overview of Data Warehousind OLAP Technology. SIG-
MOD Record26 (1997) 65-74

2. Bertossi, L., Bravo, L., Caniupan, M.: Consistent quamgwering in data warehouses. In:
AMW. (2009)

3. Hurtado, C., Gutierrez, C., Mendelzon, A.: Capturing $arizability with Integrity Con-
straints in OLAP. ACM Transacations on Database Sys@&dr{2005) 854886

4. Lenz, H., Shoshani, A.: Summarizability in OLAP and Siiatal Data Bases. In: SSDBM.
(1997) 132-143

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

11

. Rafanelli, M., Shoshani, A.: STORM: a Statistical ObjBapresentation Model. In: SS-

DBM. (1990) 14—29

. Hurtado, C., Mendelzon, A., Vaisman, A.: Maintaining ®&ubes under Dimension Up-

dates. In: ICDE. (1999) 346-355

. Hurtado, C., Mendelzon, A., Vaisman, A.: Updating OLAR@nsions. In: DOLAP. (1999)

60-66

. Caniupan, M., Bravo, L., Hurtado, C.: A logic programmapproach for repairing inconsis-

tent dimensions in data warehouses. Submitted to Data aod/likdge Engineering (2010)

. Dodge, G., Gorman, T.: Essential Oracle8i Data Warehgudbesigning, Building, and

Managing Oracle Data Warehouses (with Website). John Vil8pns, Inc. (2000)

Kimball, R., Ross, M.: The Data Warehouse Toolkit: Thenptete Guide to Dimensional
Modeling. John Wiley & Sons, Inc. (2002)

Hurtado, C., Mendelzon, A.: Reasoning about Summaitizaim Heterogeneous Multidi-
mensional Schemas. In: ICDT. (2001) 375-389

Pedersen, T., Jensen, C., Dyreson, C.: Extending EabPtie-Aggregation in On-Line An-
alytical Processing. In: VLDB. (1999) 663-674

Vaisman, A.: Updates, View Maintenance and Materidlizéews in Multidimnensional
Databases. PhD thesis, Universidad de Buenos Aires (2001)

Bertossi, L.: Consistent query answering in databage€sM Sigmod Record35 (2006)
68-76

Zhuge, Y., Garcia-Molina, H., Wiener, J.L.: Multipleeww Consistency for Data Warehous-
ing. In: ICDE. (1997) 289-300

Gupta, H., Mumick, I.S.: Selection of Views to MaterzaliUnder a Maintenance Cost
Constraint. In: ICDT. (1999) 453-470

Schlesinger, L., Lehner, W.: Extending Data WareholigeSemiconsistent Views. In:
DMDW. (2002) 43-51

Letz, C., Henn, E.T., Vossen, G.: Consistency in DataeWause Dimensions. In: IDEAS.
(2002) 224-232

Bravo, L., Caniupan, M., Hurtado, C.: Logic programsripairing inconsistent dimensions
in data warehouses. In: AMW. (2010)

Espil, M.M., Vaisman, A., Terribile, L.: Revising datales with exceptions: a rule-based
perspective. In: DMDW. (2002) 72-81

