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Abstract—Dimensions in Data Warehouses (DWs) are set
of elements connected by a hierarchical relationship. Usually,
dimensions are required to be strict and covering to support
summarizations at different levels of granularity. A dimension
is strict if all they rollup relations are functions, and is covering
if every element in a category is connected with an element in
its ancestor categories. We present the Data Warehouse Fixer
(DWF), a system that restores consistency of dimensions that
fail to satisfy their strictness constraints. The system checks
consistency, computes minimal repairs for inconsistent dimensions
by implementing Datalog programs with negation and weak
constraints, and also fixes inconsistent dimensions.
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I. INTRODUCTION

DWs integrate and materialize data from different sources,
and keep historical data for decision support [4]. DWs are
composed by dimensions and facts. Dimensions reflect the
perspectives upon which facts are viewed. Facts (also known
as measures) are events that are referenced using the dimension
elements. Dimensions are modeled as hierarchies of elements
that belong to a specific category. The categories are also
organized into a hierarchy called hierarchy schema. For each
edge in the hierarchy schema, there is a rollup relation.

It is usual that DWs use pre-computed summaries at low
level categories to derive summaries at higher level categories.
In order to use materialized results it is important that di-
mensions satisfy their strictness and covering constraints [13],
[10], [6]. A strictness constraint restricts rollup relations to
be functions (many-to-one relations). A covering constraint
restricts that a rollup relation from category c1 to category
c2 connect all the elements of c1 with an element of c2.
A dimension is said to be strict (covering) if all its rollup
relations are strict (covering). When dimensions satisfy these
conditions we can ensure that facts are aggregated once and
no more than once [13], [10], [6].

A. Problem Statement

It has been shown that dimensions need to be updated to
adapt them to changes. After updates, dimensions may be-
come inconsistent with respect to their strictness and covering
constraints [7], [8].

Example 1: Consider an store that sells musical instruments
and has a DW to obtain summarized information. The DW
contains a dimension Instrument, among others, with the
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Fig. 1. Instrument DW

following hierarchy schema: a bottom category Instrument that
goes to categories Family and Type. Both Family and Type
go to category Classification, which reaches the top category
All. Figure 1 shows the hierarchy schema and the elements
of the Instrument dimension together with the rollup relations
between elements. Dimension D in Figure 1(b) is inconsis-
tent with respect to the strictness constraint Instrument →
Classification, that requires that every instrument rollups to a
unique classification. In fact, element SX-12 rollups to WIND,
following edges (SX-12,AER) (Aerophone) and (AER,WIND),
and to PER (Percussion) following the edges (SX-12,SAXO)
and (SAXO,PER). 2

When a dimension fails to satisfy its strictness constraints
it is possible to compute its minimal repairs [2]. In this paper
we present a system that implements logic programs to obtain
minimal repairs.

II. THE MULTIDIMENSIONAL MODEL

A hierarchy schema H consists of a pair (CH,↗H), where
(CH,↗H) is an acyclic directed graph. Vertices in the set CH
are categories and the edges↗H represent the child/parent re-
lations between categories. The transitive and reflexive closure
of ↗H is denoted by ↗∗H. The set of categories CH contains
a distinguished top category called AllH, which is reachable
from every other category in CH and has no outgoing edges,
that is, there is no category ci ∈ CH such that (AllH, ci) ∈↗H
and for every cj ∈ C, (cj ,AllH) ∈↗∗H. Sometimes, we will
write ca ↗H cb instead of (ca, cb) ∈↗H.

Example 2: The hierarchy schema H = (CH,↗H), de-
picted in Figure 1(a), is as follows:
• CH = {Instrument, Family, Type, Classification, All};
• AllH = All; and
• ↗H={ (Instrument, Family), (Instrument, Type), (Type,

Classification), (Family, Classification), (Family, All),
(Type, All)}. 2



A dimension D is a tuple (HD, ED,CatD, <D), where: (i)
HD = (CHD ,↗HD ) is a hierarchy schema. (ii) ED is a set
of constants, called elements. (iii) CatD : ED → CHD is
a function that defines to which category each element in
ED belongs. (iv) the relation <D⊆ ED × ED represents the
child/parent relations between elements of different categories.
We denote by <∗D the reflexive and transitive closure of <D.
The following conditions hold: (i) allD is the only element
in category AllHD (ii) for all pair of elements a, b ∈ ED if
a <D b then CatD(a) ↗HD CatD(b). Condition (ii) ensures
that the child/parent relation (<D) only connects elements of
categories that are connected in the schema.

Example 3: Let D = (HD, ED,CatD, <D) be the dimen-
sion given in Figure 1(b). Then D is defined as follows:
• ED = {all,SX-12,YAMAHA-S,SYNTH,SAXO,AER,ELEC,

WIND,PER};
• allD = all;
• CatD = {all 7→ All,SX-12 7→ Instrument,YAMAHA-S 7→

Instrument,SYNTH 7→ Type,SAXO 7→ Type,AER 7→
Family,ELEC 7→ Family,WIND 7→ Classification,PER 7→
Classification}; and

• <D= {(SX-12,AER), (YAMAHA-S,ELEC), (SX-12,SAXO),
(YAMAHA-S,SYNTH), (AER,WIND), (ELEC,PER), (SAXO,
PER), (SYNTH,PER), (WIND,all), (PER,all)}. 2

There is a rollup relation denoted by RD(ci, cj) for each
pair of categories ci, cj ∈ CHD such that ci ↗∗HD

cj . This
relation is defined as follows:

RD(ci, cj) = {(a, b)|CatD(a) = ci,CatD(b) = cj and a <∗D b}

Example 4: Consider the dimension in Figure 1(b), the
following are rollup relations:
• RD(Instrument, Family) = {(SX-12,AER),(YAMAHA-S,

ELEC)}
• RD(Family,Classification) = {(AER, WIND), (ELEC,

PER)}. 2

The rollup relations can be classified into strict and cov-
ering. The rollup relation RD(ci, cj) is said to be strict if
it is a function, this is, for all elements x, y, z in E , if
(x, y) ∈ RD(ci, cj) and (x, z) ∈ RD(ci, cj) then y = z.
The rollup relation RD(ci, cj) is said to be covering if for all
elements e ∈ E such that Cat(e) = ci, there exists an element
e′ ∈ E such that (e, e′) ∈ RD(ci, cj). A dimension is strict if
all its rollup relations are strict. Otherwise, the dimension is
said to be non-strict. Similarly, we use the notions of covering
and non-covering dimensions.

For strict and covering dimensions [6] summarizations are
always correct, that is, operations that aggregate facts between
two categories that are connected in the hierarchy schema.
However, in some real situations dimensions fail to satisfy
these conditions [9], [12]. In these cases, to derive correct
summarizations it is necessary to specify integrity constraints
to identify rollup relations that are strict or covering [9].

Let H = (CH,↗H) be a hierarchy schema and let D =
(HD, ED,CatD, <D) be a dimension such that HD = H.
• A strictness constraint over H is an expression of the
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Fig. 2. Repairs for Dimension in Figure 1

form ci → cj where ci, cj ∈ CH and ci ↗∗H cj . The
dimension D satisfies the strictness constraint ci → cj if
and only if the rollup relation RD(ci, cj) is strict.

• A covering constraint overH is an expression of the form
ci ⇒ cj where ci, cj ∈ CH and ci ↗∗H cj . The dimension
D satisfies the covering constraint ci ⇒ cj if and only if
the rollup relation RD(ci, cj) is covering.

A dimension D satisfies a set of constraints Σ if D sat-
isfies every constraint in Σ. Otherwise, the dimension D is
inconsistent with respect to Σ.

Example 5: As shown in Example 1, the dimension D
in Figure 1(b) is inconsistent with respect to the strictness
constraint Instrument → Classification, that requires that
every instrument rollups to a unique classification. This is
because element SX-12 reaches more than one element in
Classification. However, D satisfies the following set Σ of
strictness constraints: {Instrument → Family, Instrument →
Type, Family→ Classification, Type→ Classification}. 2

III. REPAIRING DIMENSIONS IN DATA WAREHOUSES

Intuitively, a minimal repair of a dimension D is a new
dimension D′ over the same schema of D, that satisfies the
strictness and covering constraints and that is obtained by
applying a minimal number of repair operations over D. The
repair operations correspond to deletions and insertions of
edges between elements [2], [1].

Example 6: Figure 2 shows the minimal repairs for dimen-
sion D in Figure 1(b).
• D1 is obtained from D by deleting edge (AER,WIND) and

inserting (AER,PER).
• D2 is obtained by deleting edge (SAXO,PER) and insert-

ing (SAXO,WIND).
• D3 is obtained by deleting edge (SX-12,AER) and insert-

ing (SX-12,ELEC).
All the repairs are minimal since they are obtained by per-
forming a minimal number of repair operations (one insertion
and one deletion). Dimension D4 is not minimal since it is
obtained by applying four repair operations. 2

To formally define repairs, we need to introduce the follow-
ing concept. Given two dimensions D = (HD, ED,CatD, <D)



and D′ = (HD′ , ED′ ,CatD′ , <D′), the distance between them,
dist(D,D′), is defined as |(<D′ \ <D) ∪ (<D \ <D′)|. The
distance dist(D,D′) is the size of the symmetric difference
between the child/parent relations of the two dimensions.

Definition 1: [1] Let D = (HD, ED,CatD, <D) be a dimen-
sion and Σ be a set of integrity constraints over HD.
• A repair of D with respect to Σ is a dimension D′ =

(HD′ , ED′ ,CatD′ , <D′) such that HD′ = HD, ED′ = ED,
CatD′ = CatD, and D′ satisfies Σ.

• A minimal repair of D with respect to Σ is a repair D′,
such that dist(D,D′) is minimal among all the repairs of
D with respect to Σ. 2

In this definition, the set of elements in each category of
the original dimension is preserved over all the repairs, that is
deletions or additions of new elements are not allowed.

Computing minimal repairs of inconsistent dimensions is an
NP-hard problem [2]. However, we can specify and compute
them by using Datalog programs with negation and weak
constraints under the stable model semantics [11]. Repair pro-
grams to compute minimal repairs of dimensions with respect
to strictness and covering constraints were formally introduced
in [2], and presented in [1]. It has been shown that there is a
one-to-one correspondence between the best models of repair
programs and the minimal repairs of inconsistent dimensions
[2]. The best models of repair programs are stable models
that minimize the number of violations of weak constraints.
We will illustrate repairs programs in Section IV through an
example.

IV. ARCHITECTURE OF THE SYSTEM

DWF is a web-based system developed in HTML1 and
PHP2 version 5.2.8. It interacts with a DW represented by
special relational tables [2] and stored in MySQL DBMS 3

version 5.1.3. DWF works under both Linux and Windows
operative systems. For an optimal performance, the system
requires 1 GB of RAM, a two core processor, and a disc with
5400 rpm.

Dimensions in DWF are supposed to be consistent with
respect to their covering constraints but may fail to satisfy
their strictness constraints. DWF generates automatically all
the strictness constraints for a dimension, checks consistency
of them and fixes inconsistencies with respect to them. To do
this, it implements the repair programs presented in [2], [1].
DWF interacts with DLV system4 to compute the best models
of the repair programs [11].

The system is composed by the following six modules:
1) DW’s connector, which allows to connect to the DW and

load the DW to the system, this is, it loads hierarchy
schemas and strictness constraints.

2) DW’s manager, that permits to add/delete/update dimen-
sions.

1http://www.w3.org/MarkUp/
2http://www.php.net/
3http://www.mysql.com/
4http://www.dbai.tuwien.ac.at/proj/dlv/

3) Strictness constraint generator, that generates the strict-
ness constraints for a dimension.

4) Consistency checker, that verifies if a dimension is
consistent with respect to its strictness constraints.

5) Repair generator, that generates repair programs to com-
pute minimal repairs of dimensions and also computes
the best models of programs.

6) DW’s Fixer that restores consistency of dimensions by
performing the minimal changes selected by the user.

The main module of the system is the Repair generator
module, which constructs the repair programs to compute
minimal repairs. As an illustration, consider the dimension
D in Figure 1(b) that is inconsistent with respect to the
strictness constraint Instrument → Classification. DWF will
generate a repair program that contains the following rules:

1) Instrument(SX-12). Instrument(YAMAHA-S). Family(AER).

Family(ELEC). Type(SAXO). Type(SYNTH). All(all).
Classification(WIND). Classification(PER).

2) R(SX-12,AER, Instrument,Family).
R(YAMAHA-S,ELEC, Instrument,Family).
R(SX-12,SAXO, Instrument,Type).
R(YAMAHA-S,SYNTH, Instrument,Type).
R(AER,WIND,Family,Classification).
R(ELEC,PER,Family,Classification).
R(SAXO,PER,Type,Classification).
R(SYNTH,PER,Type,Classification).
R(WIN, all,Classification,All).
R(PER, all,Classification,All).

3) R′(X,Y, Instrument,Family) ← Instument(X),Family(Y ),

choice((X,Family)(Y )).

R′(X,Y, Instrument,Type) ← Instument(X),Type(Y ),

choice((X,Type)(Y )).

R′(X,Y,Family,Classification) ← Family(X),

Classification(Y ), choice((X,Classification)(Y )).

R′(X,Y,Type,Classification) ← Type(X),

Classification(Y ), choice((X,Classification)(Y )).

R′(X,Y,Classification,All) ← Classification(X),All(Y ),

choice((X,All)(Y )).

4) RT ′(X,Y,N1, N2)← R′(X,Y,N1, N2).

RT ′(X,Z,N1, N3)← RT ′(X,Y,N1, N2),R
′(Y,Z,N2, N3).

5) ← RT ′(X,Y,N1, N2),RT
′(X,Z,N1, N2), Y 6= Z.

6) Ins(X,Y,N1, N2)← R′(X,Y,N1, N2),not R(X,Y,N1, N2).

Del(X,Y,N1, N2)← R(X,Y,N1, N2),not R′(X,Y,N1, N2).

7) ⇐ Ins(X,Y,N1, N2)[1 : 1].

⇐ Del(X,Y,N1, N2)[1 : 1].

Rules in (1) capture the elements in categories of D. Rules
in (2) are the rollup relations in D. The rest of the rules
in the repair program are needed to compute the dimension
repairs. The program generates all possible dimensions D′ =
(HD′ , ED′ ,CatD′ , <D′) such that HD′ = HD, ED′ = ED, and
CatD′ = CatD (see Definition 1). Rules in (3) ensure that
every element in the dimensions has a unique parent in every
parent category. This parent is obtained by using the choice

operator [5], where choice((X, cj), (Y )) will assign a unique



value to Y in each stable model for each combination (X, cj).
Then, rules in (4) and (5) discard the dimensions that are not
strict. Finally, using rules in (6) and (7) the program chooses
the dimensions that are minimal repairs. Rules in (7) are called
weak constraints, and allow us to keep track of the number of
insertions/deletions needed to restore consistency [1].

Then, DWF will compute the best models of the repair
program, i.e., the stable models that minimize the number of
violations of weak constraints. The repair program for the
inconsistent dimension D in Figure 1(b) has the following
three best models5:

• M1= {Del(AER, WIND, Family, Classification),
Ins(AER, PER, Family, Classification)}.

• M2= {Del(SAXO, PER, Type, Classification),
Ins(SAXO, WIND, Type, Classification)},

• M3= {Del(SX-12, AER, Instrument, Family),
Ins(SX-12,ELEC, Instrument, Family)},

The total weight of each best model is 2 and corresponds
to the distance between each of the repairs and dimension
D. The insertions/deletions operations specified by the models
generate, respectively, the minimal repairs shown in Figure 2.

Finally, the system retrieves the three options to restore
consistency and then, via the module DW’s Fixer, the user
can select the most suitable option. The latter module will
materialize the changes described in the selected best model.

V. INTERFACE

Figure 3 shows the main screen of the DWFsystem.

Fig. 3. DWF Main screen

Figure 4 shows information about dimension in Figure 1
which is inconsistent with respect to the strictness constraint
Instrument → Classification. It also shows the elements of
Instrument involved in the inconsistencies.

Figure 5 shows the repair options. As expected, there are
three alternative repair operations to restore consistency of the
dimension. The user can materialize, and in this way, fix the
dimension by clicking one, and only one, alternative.

5We show only the Ins and Del atoms which show the modifications
needed to restore consistency.

Fig. 4. DWF: Checking consistency

Fig. 5. DWF: Repairing an inconsistent dimension

VI. CONCLUSIONS

DWF computes dimension repairs with respect to strictness
constraints by evaluating logic programs with stable model
semantics. As far as we know, DWF is the first system that
computes repairs of DW’s dimensions. We left as a future
work the experimentation of the system, and also the analysis
of optimizations, since it is known that the evaluation of logic
programs over large data sets may be inefficient [3].
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