
Optimizing Repair Programs and their Evaluation for
Consistent Query Answering

Monica Caniupan, Leopoldo Bertossi, and Loreto Bravo
Carleton University, School of Computer Science, Ottawa, Canada.
{mcaniupa,bertossi,lbravo}@scs.carleton.ca

Abstract. Databases may not satisfy integrity constraints (ICs) for several rea-
sons. Nevertheless, in most of the cases an important part of the data is still
consistent wrt certain desired ICs, and the database can still give some correct
answers to queries wrt those ICs. Consistent query answers are characterized as
ordinary answers obtained from every minimally repaired and consistent version
of the database. Database repairs can be specified as stable models of disjunc-
tive logic programs with program constraints. In this paper, we optimize repair
programs, model computation, and query evaluation over them. We make re-
pair programs more compact by eliminating redundant rules and programs de-
nial constraints when possible. These results facilitate the application of magic
sets techniques to query evaluation in general and in the DLV system in partic-
ular, a reasoning system for logic programs under stable model semantics. We
also investigate the applicability of magic sets techniques to repair program for
consistent query answering under the restrictions imposed by current implemen-
tations, like DLV. We also analyze the implementation in DLV of queries with
aggregate functions.

1 Introduction

Integrity constraints play an important role in databases. They capture the intended
meaning (semantics) of the data in the database. Nevertheless, databases may become
inconsistent with respect to ICs due to several reasons, among them: (a) In virtual data
integration [25] of multiple data sources, possibly individually consistent wrt local ICs,
the system may become inconsistent wrt global ICs [15]. (b) A stand alone relational
database management system may not have mechanisms to maintain certain ICs. (c) In
legacy systems data may not satisfy new semantic constraints. (d) In the presence of
user or informational constraints, which are used, but not necessarily enforced by the
system.

Even though, ICs may be violated by databases, in most of the cases only a small
portion of the data is inconsistent wrt those ICs. In consequence, it becomes necessary
to develop methods for retrieving consistent answers to queries. The notion of con-
sistent answers to first-order (FO) queries was initially defined in [1], together with a
mechanism for computing them. Intuitively, a ground tuple t̄ is a consistent answer to a
query Q(x̄) in a database instance DB , if it is an ordinary answer to Q(x̄) in every min-
imal repair of DB , where a repair is a database instance obtained from DB by deleting
or inserting tuples, that satisfies the ICs and differ minimally (under set inclusion) from
DB .

The mechanism presented in [1] to compute consistent answers is based on first-
order query rewriting. Basically, given a non-existentially quantified conjunctive query
Q, a new query is generated, such that, when posed to a database, its usual answers cor-
respond to the consistent answers to Q wrt the ICs. That method works for a restricted
set of ICs, such as functional dependencies, and full set inclusion dependencies. How-
ever, it does not consider queries or ICs with existential quantifiers, like referential ICs.

In [2, 4, 5] a more general approach based on logic programs with stable models se-
mantics [20] was introduced. There, database repairs are specified as the stable models
of a disjunctive program with program denial constraints1. Thus, there exists a one to
one correspondence between the stable models of the logic program and the database
repairs. The logical approach works for all universal ICs and FO queries. In [7] the
methodology was extended to handle acyclic referential integrity constraints as well.

Example 1. The database instance {S(a)} is inconsistent wrt the inclusion dependency
∀ x S(x)→ Q(x). Consistency can be minimally restored by inserting Q(a) or elimi-
nating S(a). The repair program contains the following rules [7]:
1. dom(a).

2. S(a, td).

3. S(x, fa) ∨Q(x, ta)← S(x, t?), Q(x, fa), dom(x).
4. S(x, fa) ∨Q(x, ta)← S(x, t?), not Q(x, td), dom(x).
5. S(x, t?)← S(x, td), dom(x). (similar for Q)

S(x, t?)← S(x, ta), dom(x). (similar for Q)
6. S(x, t??)← S(x, ta). (similar for Q)

S(x, t??)← S(x, td), not S(x, fa). (similar for Q)
7. ← S(x, ta), S(x, fa). ← Q(x, ta), Q(x, fa).

We can see that the repair programs use annotation constants in an extra argument,
actually each atom P (ā) can receive one of the following constants (with the following
intuitive meaning on the right):

P (ā, td) P (ā) is true in the database.
P (ā, ta) P (ā) is advised to be made true.
P (ā, fa) P (ā) is advised to be made false.
P (ā, t?) P (ā) is true or is made true.
P (ā, t??) P (ā) is true in the repair.

Rules 1 and 2 capture the domain constants and database facts respectively. The most
important rules are 3 and 4. They establish the form of repairing the database according
to the inclusion dependency; i.e. by making Q(x) true or S(x) false. Rules 5 capture the
atoms that become true in the program (which are annotated with t

?). Rules 6 capture
the atoms that become true in the repairs (which are annotated with t

??). Rules 7 are

1 Programs constraints are head-free rules; program denial constraints are program constraints
with only positive and built-in atoms in the body. (Database) denial constraints are ICs, i.e.
conditions that have to be satisfied by the database relations; that can be written as program
denial constraints. However the role of a program constraint (denial or not) is to discard the
stable models that violate them. In the following we will use “(denial) constraint” for the
database case, and “program (denial) constraint” for programs.

program denial constraints, which ensure that models containing atoms with both ta, fa
constants will not be generated (an atom cannot become true and false at the same time).
This program has two stable models, one corresponding to inserting Q(a), and the other
eliminating S(a). 2

In this paper we describe optimizations to the logic approach presented in [7], which
can be classified into two groups:

– Structure of repair programs: this basically involves changing the program (while
keeping the same repair semantics): elimination of redundant rules, auxiliaries
predicates, and (some) annotations constants. In addition, we make an intelligent
generation of program denial constraints, so that they are generated only when
needed.

– Evaluation of repair programs: we can compute consistent answers by evaluating
queries and repair programs in DLV system [27]. However, as we will see later,
usually only a subset of the program and the database facts is needed to compute
answers to a specific query. We explore the use of magic sets methodologies [6]
to capture that subset. Magic sets optimize the bottom-up processing of queries by
simulating a top-down evaluation of queries [9]. This allows to focalize in the rele-
vant part of the program and database facts instead of considering the whole set of
rules and set of facts. The set of rules and database facts that involve predicates and
parameters related to the predicates and values in the query are taken into account.
In particular, with magic sets only a relevant subset of the database will be used for
query evaluation.

Through structural optimizations we get simpler repair programs, that are easier to eval-
uate by a reasoning system. The second set of optimizations makes query processing
more efficient. In general consistent query answering over inconsistent databases is an
expensive computational task, actually in the worst case, ΠP

2 -complete in data com-
plexity [8, 10], i.e. of the same data complexity as evaluation of general disjunctive
logic programs under stable model semantics [12]. Speeding up query evaluation over
large data sets becomes particularly relevant.

Magic sets methods, originally introduced for deductive databases and datalog pro-
grams [9], have been extended to logic programs with stable model semantics [16], and
some of them have been implemented in DLV [11].

Optimizations on the process of retrieving consistent answers have been studied and
introduced before in the context of data integration [15], where techniques to efficiently
compute and store database repairs are described. Basically, database facts participating
in violations of universal ICs are located and extracted from the database. This splits
the database in two parts: the affected database, which contains data violating ICs; and
the safe database, which stores consistent data. That operation permits to speed up the
computation of database repairs, that are computed for the affected part. Nevertheless,
our goal in this paper is not the computation of repairs, but the efficient computation of
consistent answers. So that, our optimizations are conducted in that direction.

In this paper we also describe how to specify repair programs to be used to compute
consistent answers to scalar aggregate queries, which were introduced in [3] using a

range semantics, i.e. the answer to a query is an optimal interval that contains the value
of the aggregate query in every possible repair. Here we use logic programs instead of
conflict graph representations as in [3]. We show how to exploit the capabilities of the
DLV system to compute aggregate functions (min, max, count, times, sum) over stable
models [17].

This paper is structured as follows: in section 2 we recall basic concepts on data-
bases and repair programs. In section 3 the structural optimizations performed on repair
programs are presented. In section 4 a magic sets methodology for disjunctive repair
programs with program denial constraints is described. We also specify how to use
DLV with magic sets for this kind of programs. In section 5 the specification of re-
pair programs to compute consistent answers to scalar aggregate queries is presented.
Section 6 presents some final conclusions.

2 Preliminaries

A relational database schema is denoted by Σ = (U ,R ∪ B) where U is the possibly
infinite database domain, R is a set of database predicates, and B is a set of built-
in predicates. Database instances of a relational schema are finite collections DB of
ground atoms P (c1, ..., cn), where P is a database predicate, and c1, ..., cn are constants
in the database domain U . Extensions for built-in predicates are fixed in every database
instance. There is also a fixed set of integrity constraints (IC) that are expected to be
satisfied by any database instance, but they may not. We consider universal integrity
constraints, and referential integrity constraints (RIC) [7].

A universal integrity constraint (UIC) is a any first-order (FO) sentence that is log-
ically equivalent to a sentence of the form

∀̄(
m∧

i=1

Pi(x̄i) →
n∨

j=1

Qj(ȳj) ∨ ϕ), (1)

where ∀̄ is a prefix of universal quantifiers, Pi, Qj ∈ R, and ϕ is a formula containing
built-in atoms from B only. A referential integrity constraint is a sentence of the form

∀x̄ (P (x̄)→ ∃y Q(x̄′, y)), (2)

where x̄′ ⊆ x̄ and P,Q ∈ R.

Example 2. For schema {Student(id, name), Grad(id, name), Assistant(id, course)}
UICs are the functional dependency (FD) Student : id → name, expressed in FO
logic by ∀ id name1 name2 (Student(id, name1)∧ Student(id, name2)→ name1 =
name2); and the full inclusion dependency (IND) Grad[id, name]⊆ Student[id, name],
expressed by ∀ id name (Grad(id, name)→ Student(id, name)).
The inclusion dependency Assistant[id] ⊆ Student[id] can be expressed as a RIC:
∀ id course (Assistant(id, course) → ∃ name Student(id, name)). Here x̄ =
(id , course), x̄′ = (id), and ȳ = (name). 2

A database instance DB is consistent if it satisfies the given set IC of ICs. Otherwise,
it is inconsistent wrt IC . The semantics of constraint satisfaction adopted here is the
same of the one defined in [7], according to which a UIC of the form (1) is satisfied
if every ground tuple P (ā) ∈ DB with ā ∈ (U − {null}) holds the UIC. A RIC of
the form (2) is satisfied if for all P (ā) ∈ DB, with ā ∈ (U − {null}), there exists a
tuple b̄ of constants in U for which Q(ā′, b̄) ∈ DB. In other words, UICs are satisfied if
for tuples with non-null values the UICs hold, and RICs are classically satisfied when
universally quantified variables in (2) take values different from null, and existentially
quantified variables taken any value.

When inconsistencies arise in a DB , consistency can be restored by deleting and/or
inserting tuples. In this way, a repair is a new database instance with the same schema
as DB that satisfies ICs and differs minimally, under set inclusion, from the DB [1].

Database repairs can be specified as stable models (SM) of disjunctive logic pro-
grams [21]. The idea behind is that, given an inconsistent database instance DB and a
set of ICs IC , a disjunctive repair program Π(DB , IC) is constructed, such that there is
a one to one correspondence between the stable models of Π(DB , IC) and the repairs
of DB [4, 5]. Disjunctive rules express the options for insertions or deletions of tuples
needed to restore consistency.

As mentioned before, repair programs use annotation constants, whose role is to
enable the definition of atoms so that they can become true in the repairs (database facts
or new insertions of atoms) or false (deletion) in order to satisfy the ICs. Annotations
are performed according to the following sequential steps: first ground atoms P (c̄) from
the database receive an extra argument td, as a consequence, P (ā, td) becomes a fact
in Π(DB , IC). Then, for each IC a disjunctive rule is constructed in such a way that the
body of the rule captures the violation condition for the IC; and the head describes how
to restore the consistency by deleting or inserting the corresponding tuples. These en-
dorsements are seized by the ta, fa annotations. For instance, atom P (ā, ta) establishes
the insertion of P (ā), and P (ā, fa) instances the deletion of P (ā). As an illustration,
for the inclusion dependency ∀ x (S(x)→ Q(x)), the disjunctive program rule:

S(x, fa) ∨Q(x, ta)← S(x, td), not Q(x, td), (3)

states that if the tuple S(x, td) is a program fact but Q(x, td) is not, then consistency
is restored by deleting S(x), which receives constant fa in the head of the rule, or by
inserting Q(x), which receives the ta constant.

The t
? constant is introduced so as to keep repairing the database if there is inter-

action of ICs; then it becomes highly significant in cases where the insertion of a tuple
may generate a new IC violation, e.g. if due to a different IC, S(c, ta) is generated but
Q(c) is not in the database, the constraint is once again violated. The aftermath is that
the program rule (3) has to be changed to:

S(x, fa) ∨Q(x, ta)← S(x, t?), not Q(x, td), (4)

where the atom S(x, t?) becomes true if either S(x, td) or S(x, ta) are true.
Finally, atoms with constant t

?? are the ones that become true in the repairs. They
are use to read off the database atoms in the repairs. The following program was intro-
duced in [5, 7].

Definition 1. [5, 7] The repair program Π(DB , IC) for database instance DB and ICs
IC is composed by the following rules:
1. dom(a) for each constant a ∈ (U − {null}).
2. P (ā, td) for each atom P (ā) ∈ DB.
3. For every global universal IC of form (1) the set of clauses:� n

i=1 Pi(x̄i, fa) ∨
� m

j=1 Qj(ȳj , ta) ← � n

i=1 Pi(x̄i, t
?), �

Qj∈Q′ Qj(ȳj , fa),

�
Qk∈Q′′ not Qk(ȳk, td), dom(x̄), ϕ̄.

for every set Q′ and set Q′′ such that Q′ ∪Q′′ =
⋃m

i=1
Qi and Q′ ∩Q′′ = ∅, where x̄ is

the tuple of all variables appearing in database atoms in the rule, and ϕ̄ is a conjunction
of built-ins equivalent to the negation of ϕ.
4. For every referential IC of form (2) the clauses:
P (x̄, fa) ∨Q(x̄′,null , ta)← P (x̄, t?), not aux(x̄′), not Q(x̄′,null , td), dom(x̄).

aux(x̄′)← Q(x̄′, y, td), not Q(x̄′, y, fa), dom(x̄′, y).

aux(x̄′)← Q(x̄′, y, ta), dom(x̄′, y).

5. For each predicate p ∈ R annotation clauses:
P (x̄, t?)← P (x̄, td), dom(x̄).
P (x̄, t?)← P (x̄, ta), dom(x̄).
6. For every predicate P ∈ R, the interpretation clauses:
P (x̄, t??) ← P (x̄, ta).
P (x̄, t??) ← P (x̄, td), not P (x̄, fa).
7. For every predicate P ∈ R, the program denial constraint: ← P (x̄, ta), P (x̄, fa).
2

Rules 1 captures the database constants, which are stored in an auxiliary predicate dom.
Rules 2 establishes the program facts. Rules 3 and 4 capture the intended form of restor-
ing consistency when ICs of the form (1), (2) are violated, respectively. Rules 5 captures
the atoms that become true in the program. Rules 6 captures the atoms that become true
in the repairs. Rule 7 represents the program denial constraints.

Database repairs are retrieved from the stable models of Π(DB , IC): for each stable
modelM of Π(DB , IC) a repair is generated by selecting the atoms with t

?? constant
inM.

Example 3. (example 1 cont.) Π(DB, IC) for DB = {S(a)} and IC : ∀ x (S(x) →
Q(x)) is the program in example 1. It has the following stable models:
M1 = {dom(a), S(a, td), S(a, t?), S(a, t??), Q(a, ta), Q(a, t?), Q(a, t??)};
M2 = {dom(a), S(a, td), S(a, t?), S(a, fa)}.
Thus, consistency is recovered by inserting Q(a) (Q(a, t??) ∈ M1) or deleting S(a)
(S(a, fa) ∈M2). The repairs are {S(a), Q(a)} and {}. 2

In [5] it was proved that the repair program of Definition 1 is a correct specification
of database repairs wrt a RIC-acylic set of universal ICs of form (1) and of referential
ICs of form (2). In order to define the RIC-acyclic property, we need to introduce some
concepts:

Definition 2. The dependency graph G(IC) for a set of ICs IC of the form (1) or (2)
is defined as follow: each database predicate P in DB is a node, and there is an edge
(Pi, Pj) from Pi to Pj iff there exists a constraint ic ∈ IC such that Pi appears in the

antecedent of ic and Pj appears in the consequent of ic. In addition, there is an edge
(Pi, Pi) if Pi appears in the antecedent of an ic which has only built-in predicates in its
consequent. A node is called a sink (source) if it has only incoming (outgoing) edges.
2

Example 4. Given a set IC of two universal integrity constraints IC1 = S(x)→ Q(x)
and IC2 = Q(x) → R(x), and a referential integrity constraint IC3 = Q(x) →
T (x, y), the dependency graph G(IC) is the following:

S Q

R

T1 3

2

Edges 1 and 2 correspond to the universal constraints IC1 and IC2 resp., and edge 3 to
the referential IC. Nodes R and T are sink nodes, S is a source node. 2

Definition 3. Given a set IC of UICs and RICs, IC U denotes the set of UICs in IC .
The contracted dependency graph, GC(IC), of IC is obtained from G(IC) by replacing
for every c ∈ C(G(IC)) the vertices in V(c) by a single vertex and deleting all the edges
associated to the elements of IC U . Finally, IC is said to be RIC-acyclic if GC(IC) has
no cycles. 2

Example 5. (example 4 cont.) The contracted dependency graph Gc(IC) is obtained by
replacing in G(IC) the edges 1 and 2 and their end vertices by a vertex labelled with
{Q,R, S}.

Q,R,S T3

Since there are no loops in Gc(IC), the set IC is RIC-acylic. If we add a new UIC:
T (x, y) → R(y) to IC , all the vertices belong to the same connected component.
G(IC) and Gc(IC) are, respectively:

S Q

R

T1

2

3

4 Q,R,S
T

3

Since there is a self-loop in Gc(IC), the set of ICs is not RIC-acylic. 2

For RIC-acyclic integrity constraints, the repair program without the program denial
constraints, is locally stratified.

Definition 4. [29] A program is locally stratified iff its herbrand base2 can be parti-
tioned into sets S0, S1, . . . (called strata) such that for each rule

A1 ∨ · · · ∨Al ← B1, . . . , Bm, not C1, . . . , not Cn ∈ ground(P)3

2 For any program P , the herbrand base is the set of all ground literals constructible from the
predicate symbols appears in P and the constants of the herbrand universe. The latter, is the
set of all constants appearing in P .

3 ground(P) denotes the set of ground rules of program P . A rule is ground if no variables
appears in it.

there exists an i ≥ 1 such that all A1, . . . , Al belong to Si, all B1, . . . , Bm, belong to
S0 ∪ · · · ∪ Si, and all C1, . . . , not Cn belong to S0 ∪ · · · ∪ Si−1. For such a partition,
we use Pi to denote the set of all rules from ground(P) whose consequent belong to
Si. 2

We will use this result later to prove that we can use the magic sets technique (section
4) in the evaluation of repair programs. It has been shown that magic sets considerably
improve the evaluation of queries [11].

Proposition 1. For a database DB and a RIC-acyclic set of universal and referential
integrity constraints IC , the repair program Π(DB, IC) without the program denial
constraints is locally stratified. 2

First order queries posed over inconsistent databases are translated into logic programs.
Given a query Q, a new query Π(Q) is generated by first expressing it as a datalog
program [28], and next changing every positive literal P (s̄) by P (s̄, t??), and every
negative literal by not P (s̄, t??). Thus, in order to get consistent answers, Π(Q) is
“run” together with the corresponding repair program Π(DB , IC). So that, consistent
query answering is translated to cautious reasoning in stable model semantics [20]. Note
that for a FO query Q, program Π(DB , IC) ∪ Π(Q) is still locally stratified.

Example 6. (example 3 cont.) Given the datalog query Q : Ans(x) ← S(x), Π(Q) is
Ans(x)← S(x, t??). The stable models of Π(DB , IC) ∪Π(Q) do not have S atoms
annotated with t

?? in common, so there are no consistent answers to Q. 2

It is possible to identify classes of ICs and queries for which data complexity is lower
than the worst-case ΠP

2 -complete data complexity. In [1] CQA wrt a set of universal ICs
and projection free conjunctive queries is polynomial in data complexity. Other lower
complexity classes for CQA are identified in [10, 19]. In [5] head-cycle free disjunctive
repair programs are detected and translated into equivalent normal programs with lower
computational complexity (coNP -complete) [12].

There are different repair policies in the literature: in [8] RICs are repaired by adding
arbitrary elements of the domain, but in [10], by tuple deletions only. These and other
alternative policies can be specified by repair programs.

3 Structural Optimizations of Repair Programs

The construction of repair programs and their evaluation can be improved by applying
suitable structural modifications. For instance, in order to generate the program facts,
and domain constants, it is necessary to process the whole database (which technically
means bringing the database into main memory). So that, given a large set of data, the
construction of programs can become a slow process.

In the next sections we describe how to eliminate annotations of database facts, rules
for domain constants, and redundant rules. It is of particular interest the elimination of
program denial constraints, because apart of eliminating unnecessary model checking,
it allows for the application of magic sets as implemented in the DLV system (c.f.
section 4). Moreover, classes of ICs are identified, for which repair programs do not

contain program constraints at all. In those cases, we can apply magic sets techniques
(see section 4) to the optimized evaluation of repair programs as implemented in DLV,
which currently requires the absence of program constraints.

3.1 Database Facts Annotations, Auxiliary Predicates, and Redundant Rules

First, instead of manually inserting database facts into repair programs once annotated
with the td constant, they are imported directly from the database, without any anno-
tation; and that constant is eliminated from the programs. In consequence, the database
predicate P and its version that becomes expanded with an extra argument for the an-
notation have to be told apart. For this, the latter are replaced by an underscored version
of the predicate, e.g. P (ā, ta) becomes P (ā, ta), etc.

Furthermore, the auxiliary dom predicate is also eliminated. That predicate was
introduced to extract database constants, that are useful to check satisfiability of ICs.
Now, instead of checking that variables are restricted to the database domain, we check
that variables do not take null values. This is achieved by adding in rules regarding to
ICs only, conditions of the form x̄ 6= null, instead of using dom(x̄). This does not
change the semantics of repair programs, due to that the restriction over variables are
kept in the rules that capture the ICs. For instance, the annotation rules (c.f. rules 5 in
Definition 1) become: P (x̄, t?)← P (x̄), and P (x̄, t?)← P (x̄, ta), respectively.

Finally, instead of having two interpretation rules for each database predicate, only
one rule will be used. So far, interpretation rules are (c.f. rules 6 in example 1):
(i) P (x̄, t??) ← P (x̄, ta) and (ii) P (x̄, t??) ← P (x̄), not P (x̄, fa). These rules
define the atoms that become true in the repairs; which are the ones advised to be true (i)
and, database facts that are not advised to be false (ii). Now, for each database predicate
there is a unique interpretation rule, namely P (x̄, t??) ← P (x̄, t?), not P (x̄, fa).

With these modifications database facts do not have to be preprocessed, and the
number of rules in the repair programs decreases considerably.

3.2 Relevant Program Denial Constraints

Program denial constraints of repair program permit to discard models containing atoms
P (x̄) annotated with both ta and fa. We can identify cases of ICs for which a repair
program will never generate such models. In those cases, program constraints can be
eliminated. Apart of eliminating unnecessary model checking, the elimination of pro-
gram constraints allows for the application of magic sets as implemented in the DLV
system (section 4).

It can be seen that a repair program will have rules defining P (x̄, ta), and P (x̄, fa),
for an atom P (x̄), iff there exists at least two different ICs of the form (1) or (2) having
P (x̄) both in the antecedent of an IC and in the consequent of another. In those cases,
program denial constraints for P should be kept.

Example 7. Given the DB = {S(a)}, and the set of ICs IC : S(x) → Q(x), and
Q(x) → R(x), Π(DB , IC) has the following rules for ICs and program denial con-
straints:
S(x, fa) ∨Q(x, ta)← S(x, t?), Q(x, fa), x 6= null.

S(x, fa) ∨Q(x, ta)← S(x, t?), not Q(x), x 6= null.

Q(x, fa) ∨R(x, ta)← Q(x, t?), R(x, fa), x 6= null.

Q(x, fa) ∨R(x, ta)← Q(x, t?), not R(x), x 6= null.

← Q(x, ta), Q(x, fa). ← S(x, ta), S(x, fa). ← R(x, ta), R(x, fa).

In the case of predicate S (R) there is no way to generate an atom with constant ta (fa
for R). Thus, the program denial constraints for S and R are always satisfied, and then,
they can be eliminated. In contrast, for predicate Q both annotations are defined in the
program, and then its program denial has to be kept. 2

This idea can be formalized by appealing to the interaction between predicates as in-
volved in ICs, which is capture for the dependency graph of Definition 2.

Example 8. (example 7 cont.) The figure shows the dependency graph G(IC) for IC :
S(x)→ Q(x), and Q(x)→ R(x).

S Q

R

Node S is connected to Q due to the first IC, Q is connected to R due to the second IC.
S is a source node, R is a sink node. 2

Definition 5. Given a database instance DB , and a set of ICs IC , program Π ′(DB , IC)
can be obtained from Π(DB , IC) by deleting program denial constraints for the predi-
cates that are sinks or sources in the corresponding dependency graph G(IC). 2

Example 9. (example 7 and 8 cont.) Program Π ′(DB , IC) has the same set of rules as
program Π(DB , IC), except for the program constraints for the source predicate S and
the sink predicate R in the dependency graph in example 8. 2

Proposition 2. Given a database DB , and a set of ICs IC , Π ′(DB , IC) has the same
stable models as Π(DB , IC). 2

Corollary 1. If the ICs are only formulas of the form
∧n

i=1
Pi (x̄i)→ ϕ, where Pi(x̄i)

is an atom and ϕ is a formula containing built-ins, then the dependence graph G(IC)
has only sink nodes. In consequence, the repair program Π ′(DB , IC) has no program
denial constraints. 2

This corollary include important classes of ICs such as, key constraints, functional de-
pendencies, and range constraints.

By using all the transformations introduced so far, we obtain a new definition for
the repair program.

Definition 6. Given a database instance DB , a set of ICs IC , the repair program Π?(DB ,

IC) contains the set of rules:
1. P (ā) for each atom P (ā) ∈ DB.
2. For every global universal IC of form (1) the set of clauses:� n

i=1 P i(x̄i, fa) ∨
� m

j=1 Qj(ȳj , ta) ← � n

i=1 P i(x̄i, t
?), � Qj∈Q′ Qj(ȳj , fa),

�
Qk∈Q′′ not Qk(ȳk), x̄ 6= null, ϕ̄.

for every set Q′ and set Q′′ such that Q′ ∪Q′′ =
⋃m

i=1
Qi and Q′ ∩Q′′ = ∅, where x̄ is

the tuple of all variables appearing in database atoms in the rule, and ϕ̄ is a conjunction
of built-ins equivalent to the negation of ϕ.
3. For every referential IC of form (2) the clauses:
P (x̄, fa) ∨Q(x̄′,null , ta)← P (x̄, t?), not aux(x̄′), not Q(x̄′,null), x̄ 6= null.

aux(x̄′)← Q(x̄′, y), not Q(x̄′, y, fa), x̄′ 6= null, y 6= null.

aux(x̄′)← Q(x̄′, y, ta), x̄′ 6= null, y 6= null.

4. For each predicate p ∈ R annotation clauses:
P (x̄, t?)← P (x̄).
P (x̄, t?)← P (x̄, ta).
5. For every predicate P ∈ R, the interpretation clause:
P (x̄, t??) ← P (x̄, t?), not P (x̄, fa).
6. For every predicate P ∈ R that is not a sink or a source node in G(IC), the program
denial constraint: ← P (x̄, ta), P (x̄, fa). 2

Theorem 1. Given a database instance DB , and a set of ICs IC . The repair program
Π(DB , IC) as in Definition 1 and Π?(DB , IC) produce the same repairs. 2

Example 10. (example 7 cont.) Π?(DB , IC) is composed by the rules:
Database facts: S(a).

IC rules:
S(x, fa) ∨Q(x, ta)← S(x, t?), Q(x, fa), x 6= null.

S(x, fa) ∨Q(x, ta)← S(x, t?), not Q(x), x 6= null.

Q(x, fa) ∨R(x, ta)← Q(x, t?), R(x, fa), x 6= null.

Q(x, fa) ∨R(x, ta)← Q(x, t?), not R(x), x 6= null.

Annotation rules (similar for Q and R): S(x, t?)← S(x). S(x, t?)← S(x, ta).

Interpretation rules (similar for Q and R): S(x, t??)← S(x, t?), not S(x, fa).

Program denial constraints:← Q(x, ta), Q(x, fa).

Stable models of program Π?(DB , IC) contain less predicates than the models of
Π(DB , IC), that due to the fact that dom predicate was eliminated from repair pro-
grams. However they construct the same database repairs. DB becomes consistent by
inserting the atoms Q(a), R(a) (M1), or by deleting S(a) (M2): M1 = {S(a),

S(a, t
?), Q(a, ta), S(a, t??), Q(a, t

?), R(a, ta), Q(a, t??), R(a, t
?), R(a, t??)}, and

M2 = {S(a), S(a, t?), S(a, fa)}. 2

After applying all the optimizations presented so far, the program Π?(DB, IC), for a
database DB and a RIC-acyclic set of universal and referential ICs IC , is still locally
stratified.

From now on, repair programs are those given in Definition 6, and they will be
denoted just by Π(DB , IC), as before.

4 Optimizing Query Evaluation

Consistent answers are obtained from stable models for the combination of the repair
and query programs. Nevertheless, in most of the cases the former -so as its stable
models- contain more information than necessary to answer the query, because repair

programs are built considering all database predicates and database facts. However,
query predicates are related to a subset of the database predicates. Furthermore, we are
not interested in obtaining complete stable models (or repairs), but in only obtaining
the consistent answer to our queries. In consequence, it is important to optimize the
evaluation of the repair programs, considering only predicates and facts that are relevant
to the query. This is precisely the purpose of the magic sets (MS) technique [6], that
achieves it by simulating a top-down [9] -and then query directed- evaluation of the
query through bottom-up propagation [9]. This technique produces a new program that
contains a subset of the original rules, along with a set of new, “magic”, rules.

Classic MS techniques for datalog programs [6, 30] have been extended to logic
programs with unstratified negation under stable models semantics [16], to disjunc-
tive logic programs with stratified negation [23], with an optimized version [11] being
implemented in DLV. For this kind of programs, MS is sound and complete, i.e. the
method computes all and only correct query answers for the query. In [24] a sound but
incomplete methodology is presented for disjunctive programs with constraint rules of
the form← C(x), where C(x) is a conjunction of literals (a positive or negated atom).
Here, we present a sound and complete methodology for our disjunctive repair programs
with program denial constraints. The latter fall in the category of constraint rules with
only positive intensional literals in the body. The methodology works for the kind of
programs that we have, but not necessarily in the general case of disjunctive programs
with constraints rules. It works as follows: the set of program denial constraints PD is
separated from the rest of the rules, then MS, as defined in [11, 16], is applied to the
resulting program. At the end of the process, the program constraints are put back into
the resulting program, and so enforcing that the rewritten program has only coherent
models.

4.1 Magic Sets For Repair Programs

Given an atomic ground (or partially grounded) query and a program, MS selects the
relevant rules from the program to compute the answer for the query, and pushes down
the query constants to restrict the tuples involved in the computation of the answer.
Magic Sets carries this out by sequentially performing three well defined steps: adorn-
ment, generation and modification. The method will be illustrated using the following
repair program and query, where rules have been enumerated to refer to them.

Example 11. Given a database instance DB = {S(a), T (a)}, and a set of ICs IC :
S(x) → Q(x), Q(x) → R(x), and T (x) → W (x), Π(DB , IC ,Q) := Π(DB , IC) ∪
Π(Q) consists of the rules:

1. S(a). T (a).
2. S(x, fa) ∨Q(x, ta)← S(x, t?), Q(x, fa),

x 6= null.

3. S(x, fa)∨Q(x, ta)← S(x, t?), not Q(x),
x 6= null.

4. Q(x, fa)∨R(x, ta)← Q(x, t?), R(x, fa),
x 6= null.

5. Q(x, fa)∨R(x, ta)← Q(x, t?), not R(x),
x 6= null.

6. T (x, fa)∨W (x, ta)← T (x, t?), W (x, fa),
x 6= null.

7. T (x, fa)∨W (x, ta)← T (x, t?), not W (x),
x 6= null.

8. S(x, t?)← S(x, ta).

9. S(x, t?)← S(x).
10. Q(x, t?)← Q(x, ta).
11. Q(x, t?)← Q(x).
12. R(x, t?)← R(x, ta).
13. R(x, t?)← R(x).
14. T (x, t?)← T (x, ta).
15. T (x, t?)← T (x).
16. W (x, t?)←W (x, ta).

17. W (x, t?)←W (x).
18. S(x, t??)← S(x, t?), not S(x, fa).
19. Q(x, t??)← Q(x, t?), not Q(x, fa).
20. R(x, t??)← R(x, t?), not R(x, fa).
21. T (x, t??)← T (x, t?), not T (x, fa).
22. W (x, t??)←W (x, t?), not W (x, fa).
23. ← Q(x, ta), Q(x, fa).
Q : Ans(x)← S(x, t??).

The stables models are:

M1 = {T (a), S(a), T (a, t
?), S(a, t

?), Q(a, ta), S(a, t
??), Q(a, t

?), R(a, ta), Q(a, t
??),

R(a, t
?), R(a, t

??), Ans(a), W (a, ta), T (a, t
??), W (a, t

?), W (a, t
??)}

M2 = {T (a), S(a), T (a, t
?), S(a, t

?), Q(a, ta), S(a, t
??), Q(a, t

?), R(a, ta), Q(a, t
??),

R(a, t
?), R(a, t

??), Ans(a), T (a, fa)}

M3 = {T (a), S(a), T (a, t
?), S(a, t

?), S(a, fa), W (a, ta), T (a, t
??), W (a, t

?), W (a, t
??)}

M4 = {T (a), S(a), T (a, t
?), S(a, t

?), S(a, fa), T (a, fa)}.

We can see that under cautious reasoning there are no answers to Q. 2

MS is applied over Π−(DB , IC ,Q) := Π(DB , IC ,Q) r PD , where PD is the set of
program denial constraints of program Π(DB , IC ,Q).

For the adornment step, the relationship between the query predicates and the predi-
cates of the program Π− are explicitly defined. The output of this step is a new adorned
program denoted by AP(Π−), where each intensional predicate (IDB) is of the form
PA, where A is a string of letters b, f (for bound and free, respectively) whose length
is equal to the arity of predicate P .

Starting from the given query, adornments are created. FirstQ becomes Ansf (x)←
S fb(x, t??), meaning that the first argument of S is a free variable, and the second
one is bound. The adorned predicate S fb is used to propagate bindings (adornments)
onto the rules defining it. For instance, S fb propagate bindings to the rules 2, 3, 8, 9
and 18. Thus, the non-disjunctive rules 8 becomes S fb(x, t?) ← S fb(x, ta). Rule 9
becomes S fb(x, t?) ← S(x). Extensional predicates (EDB), i.e. facts as S(x), only
bind variables and do not receive any annotation. The same processing is done with
rule 18.

For disjunctive rules, adorned predicates also propagates bindings to others head
atoms in rules defining them. For instance, the adorned atom S fb used on rule 2:
S(x, fa) ∨ Q(x, ta) ← S(x, t?), Q(x, fa), x 6= null, produces adornments over the
head atom Q(x, ta), rule 2 becomes S fb(x, fa)∨Q

fb(x, ta)← S fb(x, t?), Qfb(x, fa),
x 6= null. Rule 3 is now S fb(x, fa) ∨Q

fb(x, ta)← S fb(x, t?), not Q(x), x 6= null.

Note that the adorned predicate Qfb also has to be processed. Finally, we generate the
following adorned program AP(Π−(DB , IC ,Q)):

Program 1.
Ansf (x)← S fb(x, t??).

S fb(x, fa) ∨Qfb(x, ta)← S fb(x, t?), Qfb(x, fa), x 6= null.

S fb(x, fa) ∨Qfb(x, ta)← S fb(x, t?), not Q(x), x 6= null.

S fb(x, t?)← S fb(x, ta).

S fb(x, t?)← S(x).

S fb(x, t??)← S fb(x, t?), not S fb(x, fa).

Qfb(x, fa) ∨Rfb(x, ta)← Qfb(x, t?), Rfb(x, fa), x 6= null.

Qfb(x, fa) ∨Rfb(x, ta)← Qfb(x, t?), not R(x), x 6= null.

Qfb(x, t?)← Qfb(x, ta).

Qfb(x, t?)← Q(x).

Qfb(x, t??)← Qfb(x, t?), not Qfb(x, fa).

Rfb(x, t?)← Rfb(x, ta).

Rfb(x, t?)← R(x).

Rfb(x, t??)← Rfb(x, t?), not Rfb(x, fa). 2

Different strategies can be used when considering in what order atoms are to be processed
and how bindings could be propagated. The process of passing bindings is called side-
ways information passing strategies (SIPS) [6]. Any of the SIPS strategies to be chosen
have to ensure that all of the body atoms are processed. We follow the strategy adopted
in [11] that is implemented in DLV, according to which only EDB predicates bind new
variables, i.e. variables that do not carry a binding already. Furthermore, for disjunc-
tive rules, head atoms that are different from the adorned atom that is being processed
at a given point, only receive bindings, but do not bind any variable. For instance, the
adorned atom S bb processed on rule S(x, fa) ∨ Q(x, y, ta)← S(x, t?), Q(x, y, fa),
x 6= null; binds variable x of the head atom Q(x, y, ta), but y stays free.

The next step is the generation of magic rules; those that simulate a top-down eval-
uation of the query. They are generated for each rule of the adorned program. The
generation differs for disjunctive and non-disjunctive adorned rules. In the latter case,
for each adorned atom P A in the body of an adorned rule, a magic rule is generated as
follows: the head of the rule becomes the magic version of P A, i.e. the new predicate
magic P A, from which all the arguments labelled with f in A are deleted. The body of
the rule becomes the magic version of the adorned rule’s head, followed by the corre-
sponding predicates that are able to propagate the bindings on P A. As an illustration,
for the adorned rule S fb(x, t?)← S fb(x, ta), being P A = S fb(x, ta), the magic rule
becomes: magic S fb(ta)←magic S fb(t?).

In the case of disjunctive adorned rules, first intermediate non-disjunctive rule are
generated, which is achieved by moving head atoms into the bodies of rules. Then,
magic rules are generated as described previously. For instance, for the rule: S fb(x, fa)
∨ Qfb(x, ta) ← S fb(x, t?), Qfb(x, fa), x 6= null, two non-disjunctive rules are gen-
erated by changing S and Q predicates into the body. Thus constructing: S fb(x, fa)←
Qfb(x, ta), S fb(x, t?), Qfb(x, fa), x 6= null, and Qfb(x, ta)← S fb(x, fa), S

fb(x, t?),
Qfb(x, fa), x 6= null. The following magic rules are constructed for the first non-
disjunctive rule: magic Qfb(ta)← magic S fb(fa); magic S fb(t?)← magic S fb(fa);
magic Qfb(fa) ← magic S fb(fa). The set of magic rules is denoted by MA(Π−).
The magic rulesMA(Π−(DB , IC ,Q)) for the adorned program 1 are:

Program 2.

magic S fb(t??)← magic ansf . magic Qfb(ta)← magic S fb(fa).
magic S fb(t?)← magic S fb(fa). magic Qfb(fa)← magic S fb(fa).
magic S fb(fa)← magic Qfb(ta). magic S fb(t?)← magic Qfb(ta).
magic Qfb(fa)← magic Qfb(ta). magic S fb(ta)← magic S fb(t?).
magic Qfb(ta)← magic Qfb(t?). magic S fb(t?)← magic S fb(t??).
magic S fb(fa)← magic S fb(t??). magic Qfb(t?)← magic Qfb(t??).
magic Qfb(fa)← magic Qfb(t??). magic Rfb(ta)← magic Qfb(fa).
magic Qfb(t?)← magic Qfb(fa). magic Rfb(fa)← magic Qfb(fa).
magic Qfb(fa)← magic Rfb(ta). magic Qfb(t?)← magic Rfb(ta).
magic Rfb(fa)← magic Rfb(ta). magic Rfb(ta)← magic Rfb(t?).
magic Rfb(t?)← magic Rfb(t??). magic Rfb(fa)← magic Rfb(t??). 2

The last phase is the modification step, where magic atoms constructed in the generation
stage are included in the body of adorned rules. Thus, for each adorned rule, the magic
version of its head is inserted into the body. The rest of the adornments of the rule are
now deleted. The set of modified rules is denoted byMO(Π−). So that, modified rules
MO(Π−(DB , IC ,Q)) for adorned program 1 are:

Program 3.
Ans(x)← magic Ansf , S(x, t??).

S(x, fa) ∨Q(x, ta)← magic S fb(fa), magic Qfb(ta), S(x, t?), Q(x, fa), x 6= null.

S(x, fa) ∨Q(x, ta)← magic S fb(fa), magic Qfb(ta), S(x, t?), not Q(x), x 6= null.

Q(x, fa) ∨R(x, ta)← magic Qfb(fa), magic Rfb(ta), Q(x, t?), R(x, fa), x 6= null.

Q(x, fa) ∨R(x, ta)← magic Qfb(fa), magic Rfb(ta), Q(x, t?), not R(x), x 6= null.

S(x, t?)← magic S fb(t?), S(x, ta).

S(x, t?)← magic S fb(t?), S(x).

Q(x, t?)← magic Qfb(t?), Q(x, ta).

Q(x, t?)← magic Qfb(t?), Q(x).

R(x, t?)← magic Rfb(t?), R(x, ta).

R(x, t?)← magic Rfb(t?), R(x).

S(x, t??)← magic S fb(t??), S(x, t?), not S(x, fa).

Q(x, t??)← magic Qfb(t??), Q(x, t?), not Q(x, fa).

R(x, t??)← magic Rfb(t??), R(x, t?), not R(x, fa). 2

The output of magic sets is the programMS(Π−(DB , IC ,Q)) that consist of the
magic rules MA(Π−(DB , IC ,Q)), and the modified rules MO(Π−(DB , IC ,Q)).
The final rewritten program denoted by MS←(Π(DB , IC ,Q)) consists of program
MS(Π−(DB , IC ,Q)), the set of program denial constraints PD , and the magic seed
atom, which is the magic version of the Ans predicate from the adorned query rule.

The rewritten version of the program in example 11,MS←(Π(DB , IC ,Q)), con-
sists of the rules in program 2, the rules in program 3, PD :← Q(x, ta), Q(x, fa) and
the magic seed atom magic Ansf . ProgramMS←(Π(DB , IC ,Q)) has the following
two stable models:

M1 = {magic Ans
f
, S(a), T (a), S(a, t

?), magic S
fb(t??), magic S

fb(fa), magic S
fb(ta),

magic S
fb(t?), magic Q

fb(fa), magic Q
fb(ta), magic Q

fb(t?), magic R
fb(fa),

magic R
fb(ta), Q(a, ta), S(a, t

??), Q(a, t
?), R(a, ta), Ans(a)}

M2 = {magic Ans
f
, S(a), T (a), S(a, t

?), magic S
fb(t??), magic S

fb(fa), magic S
fb(ta),

magic S
fb(t?), magic Q

fb(fa), magic Q
fb(ta), magic Q

fb(t?), magic R
fb(fa),

magic R
fb(ta), S(a, fa)}

Since there are no ground Ans atoms in common, from the original program there
are no answers to Q : Ans(x) ← S(x, t??), which is now expressed as Ans(x) ←
magic Ansf , S(x, t??) in the rewritten program. Nevertheless, for the rewritten pro-
gram only models that are relevant to answer the query are computed. Furthermore,
they are partially computed, i.e. they can be extended to stable models of the original
program. Of course, without considering the magic predicates, which are auxiliary pred-
icates that direct the course of query evaluation. For instance, model M1 of program
MS←(Π(DB , IC ,Q)) is a subset of the stable modelsM1 andM2 in example 11;
and modelM3 is a subset of stable modelsM3 andM4 (without considering magic
predicates). Instead of having four stable models as the original program, the rewritten
program has only two stable models. In addition, the unique database predicates that
are instantiated are the ones related to the query, i.e. Q, and R, in this case via the ICs.
For the same reason, programMS←(Π(DB , IC ,Q)) contains rules related to predi-
cates {S,Q,R} of the original repair program (plus the magic rules), but not rules for
predicates {T,W}, which are not relevant to the query.

Even though, in [24] it was shown that for general disjunctive programs with pro-
gram constraints, MS does not always produce an equivalent rewritten program (com-
pleteness may be lost), we claim that for disjunctive repair programs with program de-
nial constraints as in Definition 6, this MS methodology is both sound and complete. As
a consequence, the rewritten programMS←(Π(DB , IC ,Q)), and the original repair
program Π(DB , IC ,Q) are query equivalent in both brave and cautious reasoning4.

Theorem 2. Given a database instance DB , a set of ICs IC , an atomic and possibly
partially ground query Q, programMS←(Π(DB , IC ,Q)) ≡Q Π(DB , IC ,Q) under
both the brave and cautious semantics. 2

This result establishes that MS techniques are a good option for evaluating repair pro-
grams over large databases. In [11, 24] important results of the application of MS in
evaluation of benchmark programs are reported.

This methodology based on leaving aside the program denial constraints when MS
is applied and adding them at the end always works in the case of repair programs. This
is because of two things. First, the rewritten programMS(Π−(DB, IC,Q)) produced
by MS contains all the rules that are necessary to check the satisfiability of the program
constraints that are relevant to the query, in the sense that they contain predicates that are
connected to the query predicate in the graph G(IC). More precisely, we have program
denials of the form ← P (x̄, ta), P (x̄, fa) in Π(DB , IC) only when there are rules
defining P (x̄, ta) and P (x̄, fa) in Π(DB , IC). InMS(Π−(DB, IC,Q)), the output

4 Programs Π1 and Π2 are bravely (resp. cautiously) equivalent w.r.t. a query Q, denoted
Π1 ≡Q Π2, if for any set F of facts, brave (resp. cautious) answers to Q from the program
Π1 ∪ F are the same as the brave (resp. cautious) answers to Q from Π2 ∪ F .

of the MS, we will still find all the rules defining P ; then it will be possible to check
the satisfiability of the program constraints in the models of MS(Π−(DB, IC,Q)).
Second, with MS we obtain a “subset”(without considering the magic atoms) of the
stable models of the original program.

By the first remark, the stable models of the MS program satisfy the program de-
nials. Furthermore, each of these models of the MS program contain limited exten-
sions for database predicates (including annotations), those that are sufficient to answer
the query as well, however each of them can be extended to a stable model of the
original program. More precisely, it is possible to prove that, for every stable model
M of MS←(Π(DB, IC,Q)) (without considering the magic atoms), there is a sta-
ble model M ′ of Π(DB , IC ,Q) that extends M in the sense that M = M”, where
M” is the set of atoms of M ′ that appear in the head of a rule in (the ground ver-
sion of) MS←(Π(DB, IC,Q)). As a consequence, the stable models of program
MS←(Π(DB, IC,Q)) are all coherent models, they contain all the atoms needed
to answer a query, and they compute the same answers as the models of program
Π(DB , IC , Q) for the given query.

Our approach works for all our repair programs, but it will not necessarily work for a
more general disjunctive logic program. Sometimes, even if MS is applied to a disjunc-
tive program with constraints that does not have stable models, the method can produce
a program with stable models. This might happen if the query is related with a part of the
program which is consistent wrt the program denial; and MS focalizes on that part of the
program to answer the query. In addition, our MS method might not work for logic pro-
grams that do have stable models. For instance, for the database {R(a)} and program Π

with rules: (Y (x)← S(x)), (P (x)← R(x), not S(X)), (S(x)← R(x), not P (X)),
and program constraint← Y (x), we have one stable modelM = {R(a), P (a)}. But
for query Ans(x) ← P (x), our MS method produces a program that has two sta-
ble models (shown here without magic atoms): M1 = {R(a), P (a), Ans(a)}; and
M2 = {R(a), S(a)}, and as a consequence there are no cautious answers to the query
even though a should be an answer to it. This happens because the MS method does
not select rule Y (x) ← S(x). Then, when the constraint ← Y (x), is put back to the
program it is satisfied even though it should not be. In our case, when we deal with
repair programs, a rule that is relevant to check the satisfiability of a program denial
constraint is never left out of the MS rewritten program.

4.2 Applying Magic Sets to CQA in DLV System

In theory magic sets can be successfully applied to the evaluation of disjunctive repair
programs with program denial constraints. However, we do not know of any system that
incorporates this technique for this kind of programs. There are no implementations
that allow program constraints. Nevertheless, DLV does implement MS for disjunctive
programs without program or denial constraints [27]. In this case, DLV applies MS
internally, without giving access to the rewritten program (to which it would be easy
to add the program denial constraints at the end). As a consequence, the application
of MS with DLV for the evaluation of repair programs with program constraints is not
straightforward. In this section we describe how to modify repair programs in order to
be able to apply MS directly through DLV. Basically, program constraints are rewritten

in such a way that DLV does not recognize them as denial rules, but it is still able to
consider only coherent models, i.e. models without a same database atom annotated
both with both ta and fa.

Definition 7. Given a database instance DB , and a set of ICs IC , program Π ′′(DB , IC)
is obtained from Π(DB , IC) by replacing each program denial constraint in it of the
form← P (x̄, ta), P (x̄, fa) by the rule inc← P (x̄, ta), P (x̄, fa). 2

Program Π ′′(DB , IC) may have stable models that are not coherent models of the
original program; namely those that contain both P (c̄, ta) and P (c̄, fa) for a given
predicate P in DB and a constant c.

Example 12. (example 11 cont.) Program Π(DB , IC) has one program denial con-
straint, for predicate Q. So that, Π ′′(DB , IC) contains the modified denial rule inc←
Q(x, ta), Q(x, fa), and has two additional stable models:

M1 = {T (a), S(a), T (a, t
?), S(a, t

?), Q(a, ta), S(a, t
??), Q(a, t

?), Q(a, fa), W (a, ta), inc,

T (a, t
??), W (a, t

?), W (a, t
??)};

M2 = {T (a), S(a), T (a, t
?), S(a, t

?), Q(a, ta), S(a, t
??), Q(a, t

?), Q(a, fa), T (a, fa), inc}.

2

In order to retrieve consistent answers, a ground query Q has to be translated into Q ∨
inc, which does not affect the cautious semantics (being true in all stable models) and
does not requires to discard the incoherent models. This is due to the fact that coherent
models do not satisfy atom inc, and then they are required to satisfy Q.

Example 13. (example 12 cont.) The query Q : (not S(a) ∨ R(a)) expressed as a
program contains two rules: Ans ← not S(a) and Ans ← R(a). It is true in program
Π(DB , IC ,Q), but becomes false when evaluated in Π ′′(DB , IC ,Q). However, the
query (not S(a)∨R(a)∨ inc), which as a program is: Ans← not S(a), Ans←R(a),
and Ans← inc, is true when evaluated in Π ′′(DB , IC ,Q). 2

The case of queries with variables, such that Ans(x) ← S(x) is a bit different. It can-
not be transformed into Ans(x) ← S(x) ∨ inc, due to the fact that consistent answers
are those contained in the intersection of all the coherent stable models of the program,
i.e. they are based on cautious or skeptical reasoning. Clearly, incoherent models, those
satisfying inc, when intersected with the coherent ones, could make us loose cautious
answers; so, for incoherent models, we need to make extensions of the Ans predicate
sufficiently large. A way to solve this problem is as follows: insert rules of the form
Ans(x) ← inc, P (x, t?) into the query program, for each predicate P that is con-
nected5 to a query predicate in the graph G(IC). Atoms of the form P (x, t?) are those
that become true during the repair process. Then, they are the ones that allow to give
larger extension to the Ans predicate.

As an illustration, for query Ans(x) ← S(x) evaluated with program in example
11, the following query rules have to be added: Ans(x) ← inc, S(x, t?), Ans(x) ←
inc,Q(x, t?), Ans(x)← inc,R(x, t?).

5 A pair of nodes are connected in the graph G(IC) if there is a sequence of consecutive edges
(consider as undirected edges) connecting vertices.

Proposition 3. Given a database instance DB , a set of ICs IC , and query program
Π(Q), if Π ′′(Q) is obtained from Π(Q) by adding rules on it of the form Ans(x)←
inc, P (x, t?), for each predicate P that is connected in G(IC) to a query predicate
appearing in Π(Q), then Π ′′(DB , IC) ∪ Π ′′(Q) ≡Q Π(DB , IC) ∪ Π(Q) under the
cautious semantics. 2

4.3 Selecting Relevant Database Facts

The repair programs in Definition 6 consider all the database facts (rule 1 in it), and
all of them appear in the stable models of the program, even if they are not involved
in the computation of answers to a particular query. In example 11 tuples regarding
to predicate T appear in stable models, but they are not related to the predicate S in
the query. In spite of this, the set of tuples that are relevant to answer a query can be
selected before processing the query. This can be achieved by analyzing the relation
between database predicates and query predicates as captured by the dependency graph
in Definition 2. Intuitively, the database facts that are necessary to answer a query Q are
among those that are associated to predicates connected in the graph to the predicates
in the query.

Let Π(DB , IC ,Q)↓Q be the same as program Π(DB , IC ,Q) except for the facts:
the former contains only those P (ā) with P (ā) ∈ DB , such that one P appears in Q,
or P is connected to P ′ in the graph G(IC), with P ′ appearing in Q.

Proposition 4. Π(DB , IC ,Q)↓Q and Π(DB , IC ,Q) retrieve the same cautious/brave
answers to query Q. 2

Example 14. (example 11 cont.) The dependency graph G(IC) has the set of nodes {S,

Q, R, T, W}, and edges = {(S,Q), (Q,R), (T,W)}. Thus, Π(DB , IC ,Q) ↓Q for
Q : Ans(x) ← S(x, t??) contains as facts only those in relations {S,Q,R}, in this
case, tuple S(a). 2

Apart from the reduction of database facts to be involved in the computation of the
stable models, it worth noticing that a system like DLV may bring into main memory
the answers to a given query. In particular, this query could ask for the facts that are
relevant to a second query as determined by dependency graph, so that they can be used
for the computation of answers to the latter.

The selection of database facts performed here differs from the one described in
[15], where database facts participating in violations of ICs are extracted from the
database, and by doing so, the database is split into the “affected database” and the
“safe database”. This makes it possible to speed up the computation of database re-
pairs, which are computed only for the affected part, and are next combined with the
safe part.

5 Specification of Scalar Aggregation In Repair Programs

In [3] the notion of consistent answers for scalar aggregation queries in inconsistent
database wrt functional dependencies (FDs) was defined. Aggregation queries are of

the form: SELECT f(...) FROM R, where f is one of the aggregate operators min,
max, count, sum, avg, which are applied over an attribute or the entire relation R. These
queries return single numerical values. A consistent answer for a scalar aggregate query
[3] is a shortest numerical interval [a, b], where a, b are called the greatest lower bound
answer (glb) and the least upper bound answer (lub), resp. This answer guarantees that
the value of the scalar function evaluated in every repair can be found within the most
informative interval.

Example 15. DB = {Emp(smith, 5000), Emp(smith, 8000), Emp(jones, 3000)},
violates FD : name→ salary, because smith has two salaries. There are two repairs:
DB1 = {Emp(smith, 5000), Emp(jones, 3000)} and DB2 = {Emp(smith, 8000),
Emp(jones, 3000)}. The consistent answer to query: SELECT MAX(salary) FROM
Emp is the interval [5000, 8000], 5000 is the glb, and 8000 is the lub. 2

In [3] repairs are represented as independent sets in conflict graphs for FDs, which is a
compact representation of all repairs. Repairs wrt FDs can also be specified by disjunc-
tive logic programs, together with the aggregate query. The semantics of aggregation
under stable model semantics for disjunctive program is investigated in [13, 17]. The
implementation of aggregate queries in DLV is described in [14]. DLV currently imple-
ments min, max, count, times, sum, but not avg [18].

The repair programs will now contain rules defining aggregate functions, in DLV
notation, rules of the form A(w) ← #f{x̄′ : P (x̄, t??)} = w, where A is a new
predicate that is not present elsewhere in the program, f is an aggregation function,
which is applied over variable x̄′ ⊆ x̄ of predicate P , and w is a variable that stores the
value returned by f in each stable model [17].

Example 16. (example 15 cont.) Program Π(DB , IC) has the following rules6:
Emp(smith, 5000). Emp(smith, 8000). Emp(jones, 3000).

Emp (x, y, fa) ∨ Emp (x, z, fa)← Emp (x, y, t?), Emp (x, z, t?), y 6= z, y 6= null,

z 6= null.

Emp (x, y, t?)← Emp (x, y, ta).

Emp (x, y, t?)← Emp(x, y).

Emp (x, y, t??)← Emp (x, y, t?), not Emp (x, y, fa).

A(w)← #max{y : Emp (x, y, t??)} = w. 2

Even though, the aggregate rule in the previous example satisfies the formalisms given
in [17], the program will not run in DLV system. The reason is that DLV currently
does not implement aggregations over predicates that are defined by unstratified or
disjunctive rules, as in the previous case. In these cases there exists problems during
the grounding process of DLV, which is performed before the computation of the stable
models. For instance, variable w in the rule A(w)← #max{y : Emp (x, y, t??)} = w

is unbound during grounding, and DLV would have to compute all possible values for
binding it. For functions max,min there are among the values taken by variable y,
but for other functions as sum grounding could get very difficult. As a consequence,
in order for DLV to answer queries involving functions max and min, rules have to be

6 By corollary 1 this repair program does not have program denial constraints.

modified by inserting an extra argument that binds the aggregation variable. For in-
stance, aggregation rule A(w) ← #max{y : Emp (x, y, t??)} = w is transformed
into A(w) ← #max{y : Emp (x, y, t??)} = w,Emp (, w, t??), where variable w is
bounded by atom Emp (, w, t??).

Example 17. (example 16 cont.) The program Π(DB , IC) with the aggregation rule
A(w) ← #max{y : Emp (x, y, t??)} = w,Emp (, w, t??) now has the following
stable models:

M1 = {Emp(smith, 5000), Emp(smith, 8000), Emp(jones, 3000), Emp (smith, 5000, t
?),

Emp (smith, 8000, t
?), Emp (jones, 3000, t

?), Emp (smith, 5000, t
??),

Emp (smith, 8000, fa), Emp (jones, 3000, t
??), A(5000)}

M2 = {Emp(smith, 5000), Emp(smith, 8000), Emp(jones, 3000), Emp (smith, 5000, t
?),

Emp (smith, 8000, t
?), Emp (jones, 3000, t

?), Emp (smith, 5000, fa),

Emp (smith, 8000, t
??), Emp (jones, 3000, t

??), A(8000)}

The aggregation function returns 5000 as the maximum salary in the first repair, and
8000 in the second one.

In order to obtain consistent answers to aggregate queries, one can capture all the
values returned by the aggregation function across the models, which can be achieved
by posing the query Ans(x) ← A(x) to the program Π(DB , IC), evaluating it under
the brave semantics. Here we obtain the values Ans(5000), Ans(8000), which can be
sorted to obtain the glb and lub. 2

Notice that for sum and count it is not possible in general to bind variable w to a value
in a database predicate.

6 Conclusions

In this paper, repair programs have been simplified and optimized by eliminating re-
dundant rules, facts and annotations. In addition, important classes of ICs are identified
for which repair programs can be specified without program denial constraints. The
elimination of these rules becomes very important when magic sets techniques are ap-
plied with the DLV system. Magic sets techniques allows to focalize on part of repair
programs and facts that are relevant to answer a query. It was shown that the magic set
method is sound and complete when it is applied in disjunctive repair programs with
program denial constraints.

In order to apply magic sets to repair programs in DLV, a suitable processing of
program constraints (if the program contains them) has to be performed. This is due to
the fact that currently DLV does not support magic sets for programs with denial con-
straints. In addition, DLV applies magic sets internally, without returning the rewritten
program. This implies that adding later the program constraints to the rewritten program
cannot be done by the user.

Moreover, the evaluation of programs in DLV was also improved by involving only
relevant facts in the computation of query answers, so that now only a smaller portion
of the database is imported into DLV.

We explore the aggregation capabilities of DLV system for computing consistent
answers to scalar aggregation queries as defined in [3]. The current version of DLV
implements five aggregation functions, but with some restrictions that are satisfied by
our repair programs only for functions max and min.

We are currently developing a system for computing consistent query answers based
repair programs. Currently, the system implements the logic approach presented in [7],
with some of the structural optimizations presented in section 3.

In addition, we are working in the identification of classes of ICs and queries for
which, the well-founded semantics of logic programs [22] can be used, instead of the
stable models semantics. Preliminary research in this direction can be found in [2], for
slightly different specification programs. This could be interesting due to the fact that
the well-founded semantics has lower computational complexity than the stable model
semantics [12], and efficient implementations are available [31].

It would be also interesting to extend the techniques described in [15] for splitting
the database into the affected and safe parts to referential integrity constraints under the
semantics of their satisfaction in presence of null values.

Extensions of consistent query answering to aggregate queries with GROUP BY us-
ing logic programs would be also interesting.

Acknowledgements: Research supported by NSERC (Grant 250279-02) and the Uni-
versity of Bio-Bio (Chile). L. Bertossi is Faculty Fellow of IBM CAS (Toronto). We
are grateful to Nicola Leone, Gianluigi Greco and Wolfgang Faber for their support and
information in relation to the DLV system.

References

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsistent Data-
bases. In Proc. 18th ACM Symposium on Principles of Database Systems (PODS 99), ACM
Press, 1999, pp. 68-79.

[2] Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets for Consistent Query Answering
in Inconsistent Databases. Theory and Practice of Logic Programming, 2003, 3(4-5): 393–
424.

[3] Arenas, M., Bertossi, L., Chomicki, J., He, X., Raghavan, V., and Spinrad, J. Scalar Aggre-
gation in Inconsistent Databases. Theoretical Computer Science, 2003, 296:405–434.

[4] Barcelo, P. and Bertossi, L. Logic Programs for Querying Inconsistent Databases. In Proc.
5th International Symposium on Practical Aspects of Declarative Languages (PADL 03).
Springer LNCS 2562, 2003, pp. 208–222.

[5] Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically Cor-
rect Answers from Databases with Annotated Logic and Answer Sets. Chapter in book
Semantics of Databases, Springer LNCS 2582, 2003, pp. 1–27.

[6] Beeri, C. and Ramakrishnan, R. On the Power of Magic. In Proc. 6th ACM Symposium on
Principles of Database Systems (PODS 87), ACM Press, 1987, pp. 269-284.

[7] Bravo, L. and Bertossi, L. Consistent Query Answering under Inclusion Dependencies.
14th Annual IBM Centers for Advanced Studies Conference (CASCON 2004), pp. 202-
216.

[8] Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query An-
swering over Inconsistent and Incomplete Databases. In Proc. Symposium on Principles of
Database Systems (PODS 03), ACM Press, 2003, pp. 260-271.

[9] Ceri, S., Gottlob, G. and Tanca, L. Logic Programming and Databases. Springer-Verlag,
1990.

[10] Chomicki, J. and Marcinkowski, J. Minimal-Change Integrity Maintenance Using Tuple
Deletions. Information and Computation, 2005, 197(1-2):90-121.

[11] Cumbo, C., Faber, W., Greco, G. and Leone, N. Enhancing the Magic-Set Method for
Disjunctive Datalog Programs. In Proc. of the 20th International Conference on Logic
Programming (ICLP 04), Springer LNCS 3132, 2004, pp. 371–385.

[12] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity And Expressive Power of
Logic Programming. ACM Computer Surveys, 2001, 33(3):374-425.

[13] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. Aggregate Functions in
Disjunctive Logic Programming: Semantics, Complexity, and Implementation in DLV. In
Proc. of the 18th International Joint Conference on Artificial Intelligence (IJCAI 03), 2003,
Morgan Kaufmann, pp. 847-852.

[14] Dell’Armi, T., Faber, W., Ielpa, G., Leone, N. and Pfeifer, G. Aggregate Functions in DLV.
In Proc. Answer Set Programming: Advances in Theory and Implementation, 2003, Marina
de Vos and Alessandro Provetti, pp. 274–288.

[15] Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. In Proc. 19th International Conference on Logic
Programming (ICLP 03), Springer LNCS 2916, 2003, pp. 163-177.

[16] Faber, W., Greco, G. and Leone, N. Magic Sets and their Application to Data Integration.
In Proc. International Conference on Database Theory (ICDT 05), Springer LNCS 3363,
2005, pp. 306-320.

[17] Faber, W., Leone, N. and Pfeifer, G. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. 9th European Conference on Artificial Intelligence
(JELIA 2004), Springer LNCS 3229, 2004, pp. 200–212.

[18] Faber, W. Unfounded Sets for Disjunctive Logic Programs with Arbitrary Aggregates.
In Logic Programming and Nonmonotonic Reasoning, 8th International Conference (LP-
NMR’05), 2005, Springer Verlag, To appear.

[19] Fuxman, A. and Miller, R. First-Order Query Rewriting for Inconsistent Databases. In
Proc. International Conference on Database Theory (ICDT 05), Springer LNCS 3363,
2004, pp. 337-354.

[20] Gelfond, M. and Lifschitz, V. The Stable Model Semantics for Logic Programming. In
Logic Programming, Proceedings of the 5th International Conference and Symposium
(ICLP/SLP 88), MIT Press, 1988, pp. 1070-1080.

[21] Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 1991, 9:365–385.

[22] Van Gelder, A., Ross, K.A., Schlipf, J.S. Unfounded Sets and Well-Founded Semantics
for General Logic Programs. In Proc. Symposium on Principles of Database Systems
(PODS 88), ACM Press, 1988, pp. 221-230.

[23] Greco, S. Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. In IEEE Transactions on Knowledge and Data Engineering, 2003, 15(2):368-
385.

[24] Greco, G., Greco, S., Trubtsyna, I. and Zumpano, E. Optimization of Bound Disjunc-
tive Queries with Constraints. To Appear in Theory and Practice of Logic Programming,
(oai:arXiv.org:cs/0406013), 2004.

[25] Lenzerini, M. Data Integration: A Theoretical Perspective. In Proc. ACM Symposium on
Principles of Database Systems (PODS 02), ACM Press, 2002, pp. 233-246.

[26] Lifschitz, V. and Turner, H. Splitting a Logic Program. In Proc. ICLP 94, pp. 23–37, MIT
Press, 1994.

[27] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. The DLV
System for Konwledge Representation and Reasoning. To appear in ACM Transactions on
Computational Logic, arXiv.org paper cs.LO/0211004.

[28] Lloyd, J.W. Foundations of Logic Programming. Second ed., Springer-Verlag, 1987.
[29] Przymusinski, T.C. Stable Semantics for Disjunctive Programs. New Generation Comput-

ing, 9(3/4):401–424, 1991.
[30] Ross, K. Modular Stratification and Magic Sets for Datalog Programs with Negation. J.

ACM, 1994, 41(6), pp. 1216-1266.
[31] Sagonas, K.F., Swift, T. and Warren, D.S. XSB as an Efficient Deductive Database Engine.

In Proc. International Conference on Management of Data (SIGMOD 94), ACM Press,
1994, pp. 442-453.

7 Appendix: Proofs

Before proving the propositions and theorems, we introduce some definitions that will
be used in them.

Definition 8. [11] Given a set S of ground rules of a program P (ground(P)), R(S)
denotes the set {r ∈ ground(P)|∃ r′ ∈ S,∃ q ∈ B(r′) ∪H(r′) such that q ∈ H(r)}.
B(r′) and H(r′) stand for the body of rule r′, and the head of r′ respectively. Then,
rel(Q, P) is the least fixed point of the following succession rel0(Q, P) = {r ∈
ground(P)|∃ ground(q) ∈ Q ∩H(r)}, and reli+1(Q, P) = R(reli(Q, P)), for each
i > 0.

Given a model M and a predicate symbol g, define M [g] as the set of atoms in M

whose predicate symbol is g. In addition, given a program P , P [g] is the set of rules of
P whose head contains symbol g.

Then, given a model M and a program P , M [P] is the set of atoms in M whose
predicate symbol appears in the head of some rule in program P . And, given a set of
interpretations S, S[g] = {M [g]|M ∈ S}, therefore S[P] = {M [P]|M ∈ S} [11]. 2

Proof of Proposition 1: Consider Definition 4 of a locally stratified program. Given
a database DB and a set of RIC-acyclic universal and referential ICs, let {V1, . . . , Vr}
be the set of vertices of Gc(IC). Since this graph is obtained by contracting the vertices
of G(IC), each vertex in Gc(IC) is a set of predicates of R. In fact,

⋃r
i=1

Vi = R and
Vj ∩ Vk = ∅ for Vj , Vk ∈ V . Since Gc(IC) is acyclic, we can safely assume that the
vertices are numbered in a topological ordering, i.e for every edge (Vi, Vj), we have
i < j. Then, for Π(DB, IC) and U? = (U ∪ null) we can consider the following
strata:
S0 = {p(x̄, td) | p ∈ R and x̄ ∈ U?} ∪{dom(x) | x ∈ U?}
S1 = {p(x̄, y) | p ∈ Vr, x̄ ∈ U

? and y ∈ {t?, ta, fa}}
S2 = {auxi(x̄) | Vr has an incoming edge in Gc(IC) corresponding to the referential

integrity constraint ICi and x̄ ∈ U?}
S3 = {p(x̄, y) | p ∈ Vr−1, x̄ ∈ U

? and y ∈ {t?, ta, fa}}
S4 = {auxi(x̄) | Vr has an incoming edge in Gc(IC) corresponding to the referential

integrity constraint ICi and x̄ ∈ U?}
. . .
Si(for i ≤ (2r − 1) and odd)= {p(x̄, y) | p ∈ Vr−b i−1

2
c, x̄ ∈ U

? and y ∈ {t?, ta, fa}}

Si(for i ≤ (2r − 1) and even)= {auxi(x̄) | Vr−b i−1

2
c has an incoming edge in Gc(IC)

corresponding to the referential integrity constraint ICi and x̄ ∈ U?}
. . .
S2r−1 = {p(x̄, y) | p ∈ V1, x̄ ∈ U

? and y ∈ {t?, ta, fa}}
S2r = {p(x̄, y) | p ∈ R, x̄ ∈ U? and y ∈ {t??}}
It is easy to check that this strata satisfies the needed conditions on every rule of the
program (without considering the program denial constraints) and therefore that the
program is locally stratified. 2

Proof of Proposition 2: By contradiction, suppose that there exists a stable modelM
for Π ′(DB , IC) having both P (ā, ta), and P (ā, fa) for a given predicate P . Then,
sinceM is a model of Π ′(DB , IC), the program does not have a program denial con-
straint← P (ā, ta), P (ā, fa). This implies that P is a sink (or source) node in G(IC).
In addition, since P (ā, ta) and P (ā, fa) are inM, program Π ′(DB , IC) has at least
a rules defining P (x̄, ta) and another defining P (x̄, fa). However, if these rules are in
program Π ′(DB , IC) then P cannot be a sink (or source) node in graph G(IC). We
have reached a contradiction. 2

Before giving the proof of theorem 1, we make the following simplifications:

– Π denotes the repair program Π(DB , IC).
– Π? denotes the repair program Π?(DB , IC).

This is possible since the database instance DB , the set of ICs IC , and the query Q do
not change in any of the proof.

In addition, we define two sets, AC contains the following annotation constants:
{fa, ta, td, t?, {}}, where {} is use to refer to the “no annotation” of database facts in
program Π?. The second set is IR which is composed by constant t??.

Then, SM(Π)[AC] is the set of stable models of program Π restricted to the atoms
that have annotation constants in AC (including database facts of program Π?). Π[AC]
is the repair program restricted to the rules whose head atom contains one of the annota-
tion arguments in AC. And Π[IR] denotes the interpretation rules of the ground repair
program. Clearly Π = Π[IR] ∪Π[AC].

Proof of Theorem 1: The proof is divided in the following items:

1. The elimination of td annotation of repair programs does not affect the semantics
of the program.
In Π database facts are atoms of the form P (ā, td), where td is an extra argument
given by the program to identify database facts from others atoms in the program.
In program Π? that annotation is eliminated and database facts are used as they
come from the database, e.g. they are atoms of the form P (ā). It is easy to see
that P (ā, td) and P (ā) refer to the same database facts, given the fact that they
are retrieved from the same database instance DB . So that, P (ā, td) and P (ā) are
equivalent.
Due to the elimination of td annotation, in program Π? the version of P that
is expanded with others annotations is replaced by an underscored version, e.g.

P (ā, ta), becomes P (ā, ta), etc. This is just a syntactic change. So that, atom
P (ā, ta) in program Π has the same meaning as atom P (ā, ta) in program Π?.
As a consequence, the elimination of td annotation does not alter the semantics of
the repair program.

2. The replacement of dom(x̄) in rules, by conditions of the form x̄ 6= null does not
affect the semantics of the program.
Let us remember the semantic of constraint satisfaction specified by repair pro-
grams. First, UICs are satisfied if they hold for tuples with non-null values. Second,
RICs are classically satisfied when universally quantified variables in the RIC take
values different from null, and existentially quantified variables taken any value. It
follows from the previous, that we check consistency of ICs for tuples whose val-
ues are different from the “null” constant. And that is precisely what we achieve by
adding conditions of the form x̄ 6= null, for every variable in the IC rules of repair
programs. So, it is easy to see that adding those conditions is equivalent, to restrict
the values of variables to be part of the database domain which is achieved in Π

with the predicate dom(x̄).
Those conditions are just needed in the IC rules, because they are the ones that
check the satisfaction of ICs. Therefore, the elimination of dom(x̄) atoms does not
affect the semantics of the program.

3. The elimination of some denial constraints does not affect the semantics of the
program.
It follows from Proposition 2.

4. The interpretation rules in program Π? and Π define the same set of atoms anno-
tated with t

??.
From the previous items we know that:

Fact A.1. For every stable model M that belongs to SM(Π)[AC], there exists a
stable model M ′ that belongs to SM(Π?)[AC], such that M = M ′, wrt atoms
with annotations constants: {fa, ta, t?}.

Fact A.2. For every stable model M ′ that belongs to SM(Π?)[AC], there exists a
stable model M that belongs to SM(Π)[AC], such that M ′ = M , wrt atoms with
annotations constants: {fa, ta, t?}.

It is easy to see that program Π (Π?) can be split into a bottom program Π[AC]
(Π?[AC]) and a top program Π[IR] (Π?[IR]) using as a splitting set all the
atoms except the ones annotated with t

?? [26]. This implies that the programs can
be hierarchically evaluated in the following way: the models of program Π are
SM(Π) =

⋃
M SM(M ∪Π[IR]), for each stable model M in SM(Π)[AC].

So, we prove that:
– For every stable model M” that belongs to SM(M ∪ Π[IR]) with M in

SM(Π)[AC], there exists a stable model M ? that belongs to SM(M ′∪Π?[IR]),
with M ′ in SM(Π?)[AC], such that M”[t??] = M?[t??].
By contradiction, let us assume that there exists a stable model M” in SM(M∪
Π[IR]) with M in SM(Π)[AC], and there is not a stable model M ? that be-
longs to SM(M ′ ∪Π?[IR]) with M ′ in SM(Π?)[AC], such that M”[t??] =
M?[t??]
We have two cases depending if the repair obtained from M” is empty or not.

• First, the repair obtained from M” is empty. So M” does not have atoms
with the t

?? constant. In this case M” = M with M in SM(Π) [AC].
Then, according to Fact 1 we know that there exists a model M ′ in SM(Π?)
[AC] such that M = M ′. So given the fact that M” = M , we now also
have that M” = M ′. Now, if M? has no atoms with t

??, M”[t??] would
be equal to M?[t??] (both would be empty) and this would lead to a con-
tradiction. Then, M?[t??] should not be empty. Then, there exists an atom
P (c̄, t??) in M?. Then, M ′ has P (c̄, t?) and does not have P (c̄, fa). If
M ′ has P (c̄, t?) then P (c̄) is true or P (c̄, ta) is true in M ′. However, if
either of both situations happens, and given the facts that P (c̄, fa) is false
in M ′, and M = M ′, then M” satisfies P (c̄, t??) as well. That because of
the interpretation rules in Π[IR]. But, M”[t??] = ∅. We have reached a
contradiction.

• Second, the repair obtained from M” is not empty. In this case, there ex-
ists a tuple P (c̄, t??) in M” such that there is no model M? that satisfies
P (c̄, t??). If atom P (c̄, t??) is true in M” then we have that P (c̄, td) is in
M , (M in SM(Π)[AC]) in which case P (c̄, fa) is not in M , or P (c̄, td) is
not in M , in which case P (c̄, ta) is in M . In both cases we have that atom
P (c̄, t?) is true in M . In addition, because of Fact 1 we know that exists
a stable model M ′ in SM(Π?)[AC], such that M = M ′. Now, there are
two cases to consider: P (c̄, td) is in M and P (c̄, td) is not in M .
First, for P (c̄, td) in M , we have that since P (c̄, t?) is in M , P (c̄, fa)
has to be false in M . Then, since M = M ′ and because of the inter-
pretation rule of Π?: P (c̄, t??) ← P (c̄, t?), not P (c̄, fa), we have that
there exists a model M? such that P (c̄, t??) is in M? . Then we have
reached a contradiction. Second, for P (c̄, td) not in M , we have that since
P (c̄, t?) is in M , P (c̄, ta) has to be true in M and P (c̄, fa) has to be false
in M . Then, since M = M ′ and because of the interpretation rule of Π?:
P (c̄, t??)← P (c̄, t?), not P (c̄, fa), we have that there exists a model M ?

such that P (c̄, t??) is in M?. We have reached a contradiction.

– For every stable model M? that belongs to SM(M ′ ∪ Π?[IR]), with M ′

in SM(Π?)[AC], there exists a stable model M” that belongs to SM(M ∪
(Π)[IR]) with M in SM(Π)[AC], such that M ?[t??] = M”[t??].
By contradiction, let us assume that there exists a model M ? that belongs to
SM(M ′∪Π?[IR]) with M ′ in SM(Π?)[AC], and there is not a stable model
M” that belongs to SM(M ∪ Π[IR]) with M in SM(Π)[AC], such that
M?[t??] = M”[t??]. Here we have two cases depending if the repair obtained
from M? is empty or not.
• First, the repair obtained from M? is empty. So M? does not have atoms

with the t
?? constant. In this case M? = M ′ with M ′ in SM(Π?) [AC].

Then, because of Fact 2 we know that there exists a model M in SM(Π)
[AC] such that M ′ = M . So given the fact that M? = M ′, we now
also have that M? = M . Now, if M? has no atoms with t

??, M?[t??]
would be equal to M”[t??] (both would be empty) and this would lead to
a contradiction. Then, M”[t??] should not be empty.

Then, there exists a tuple P (c̄, t??) in M”. Now, there are two cases to
analyze, P (c̄, td) is in M or P (c̄, td) is not in M . First, if P (c̄, td) is in M ,
then, P (c̄) is in M ′ and P (c̄, t?) is in M ′. Also, since P (c̄, t??) is in M”,
P (c̄, fa) is not in M and P (c̄, fa) is not in M ′. Given the interpretation rule
in Π?: P (c̄, t??) ← P (c̄, td), not P (c̄, fa), we have P (c̄, t??) is in M?.
But, M?[t??] is empty. We have reached a contradiction. Now, we need
to analyze for P (c̄, td) is not in M . Since P (c̄, t??) is in M”, P (c̄, fa) is
not in M and P (c̄, ta) is in M . Then, given the fact that M = M ′, then
P (c̄, ta) is in M ′, and P (c̄, t?) is in M ′. So given the interpretation rule
in Π?: P (c̄, t??) ← P (c̄, td), not P (c̄, fa), we have P (c̄, t??) is in M?.
But, M?[t??] is empty. We have reached a contradiction.

• Second, the repair obtained from M ? is not empty, so there exists P (c̄, t??)
in M?. If atom P (c̄, t??) is true in M? then we have that P (c̄, t?) is true
in M ′ (M ′ is in SM(Π?)[AC]), and P (c̄, fa) is false in M ′. If P (c̄, t?) is
true, then either P (c̄) or P (c̄, ta) are true in M ′. In addition, because of
Fact 2 we know that exists a model M in SM(Π)[AC], such that M ′ =
M . Now there are two cases to consider: P (c̄) is in M ′ or P (c̄) is not
in M ′. First we will assume that P (c̄) is true in M ′, and therefore that
P (c̄, fa) is false. Then because M = M ′, and by using the interpretation
rule: P (c̄, t??)← P (c̄, td), not P (c̄, fa) of Π , P (c̄, t??) is in M”. Then
M” exists and we have reached a contradiction. Now, if P (c̄) is not in M ′

we have that P (c̄, ta) is in M ′. Then because M = M ′, and by using the
interpretation rule: P (c̄, t??)← P (c̄, ta) of Π , P (c̄, t??) is in M”. Then
M” exists and we have reached a contradiction.

2

Before proving Theorem 2 we need to introduce some propositions and lemmas.

By personal communication we know that the following lemmas, which are a combina-
tion of results presented in [11] and [16] have been proved, but they are not published
yet.

Lemma A.1. [11, 16] Given a datalog program P with unstratified negation, where
negation is involved only in even cycles, for every stable model M ′ that belongs to
SM(MS(P,Q)), there exists a stable model M that belongs to SM(rel(Q, P)) such
that M = M ′[rel(Q, P)], 2

Lemma A.2. [11, 16] Given a datalog program P with unstratified negation, where
negation is involved only in even cycles, for every stable model M that belongs to
SM(rel(Q, P)), there exists a stable model M ′ that belongs to SM(MS (P,Q)) such
that M = M ′[rel(Q, P)]. 2

Note that the correspondence between the stable models (SM) of the magic rewrit-
ten program MS(P,Q), and the SM of program rel(Q, Π) is established by focus-
ing on non-magic atoms only. Which is achieved in Lemma A.1 by condition M =
M ′[rel(Q, P)], and in Lemma A.2 by condition M = M ′[rel(Q, P)].

Here, we use Π to refer to Π(DB , IC ,Q); Π− to refer to Π−(DB , IC ,Q).MS(Π−)
refers to the MS method for disjunctive programs without denial constraints, and it is
applied as presented in [11, 16]. We use MS←(Π) to refer to the MS method pre-
sented in section 4, for disjunctive programs with denial constraints. Then, MS← =
MS(Π−) + PD . In addition, PDQ is the set of program denial constraints involving
predicates that are connected to the query predicates in the dependency graph G(IC).
PD?

Q is a program containing rules of the form Ans(x)← P (x, ta), P (x, fa), for each
program denial constraint d in PDQ. The repair program Π is coherent if it satisfies
the set of program constraints PD , and the program rel(Q, Π) is coherent if it satisfies
the set of program constraints PDQ.

Proposition A.1. For a disjunctive program Π , and the set of program denial constraints
PDQ, we have that: rel(PD?

Q ∪Q, Π−) ≡ rel(Q, Π−). 2

Proof. It is easy to see that rel(PD?
Q ∪ Q, Π−) is equivalent to: rel(PD?

Q, Π−) ∪
rel(Q, Π−). So it is sufficient to prove that program rel(PD?

Q, Π−) ⊆ rel(Q, Π−).
First, if there are not program denial constraints relevant to answer the query, then

program PD?
Q has no rules, and rel(PD?

Q, Π−) is empty, and we have that rel(PD?
Q∪

Q, Π−) ≡ rel(Q, Π−) trivially holds. So, we focalize in the case where there are
program denial constraints relevant to answer the query.

For simplicity let us assume query Q : Ans(x) ← s(ā, t??), and there exists one
program denial constraint associated with the query, such that, PD?

Q is a rule of the
form: ans(x)← s(ā, ta), s(ā, fa). It is easy to see that: rel0(PD?

Q, Π−) is composed
by the rules of program Π− whose heads contains either atom s(ā, ta) or s(ā, fa).

In the other hand, rel0(Q, Π−) is composed by the interpretation rule: s(ā, t??)←
s(ā, t?), not s(ā, fa). Then, rel1(Q, Π−) is: rel0(Q, Π−) plus rules of Π− whose
head atom is s(ā, t?) or s(ā, fa). Then, rel2(Q, Π−) is: rel1(Q, Π−) plus rules of
Π− whose head atom is s(ā, ta) or database facts of the form s(ā). So, we have that
rel0(PD?

Q, Π−)⊆ rel2(Q, Π−), and as a consequence rel(PD?
Q, Π−) ⊆ rel(Q, Π−)

holds. 2

Since our disjunctive repair programs are locally stratified (Proposition 1, and given
the fact that MS applied over this kind of program without denial constraints, i.e.
MS(Π−) is sound a complete, we will use Lemmas A.1 and A.2 in the proof of the
following propositions.

Proposition A.2. For every stable model M ′ that belongs to SM(MS←(Π)), there
exists a stable model M that belongs to SM(rel(Q, Π−)) such that M is coherent, i.e.
it satisfies the set of program constraints PDQ, and M = M ′[rel(Q, Π−)]. 2

Proof. By contradiction, let us assume that there exists a stable model M ′ in SM(MS←

(Π)) such that there is not a stable model M in SM(rel(Q, Π−)), where M is coher-
ent, and M = M ′[rel(Q, Π−)].

M ′ is in SM(MS←), then sinceMS← =MS(Π−) + PD , M ′ is in SM(MS
(Π−)). Now, by Lemma A.1, there exists a model M” in SM(rel(Q, Π−)) such that
M” = M ′[rel(Q, Π−)]. Because of the hypothesis M” is incoherent. We have two
cases:

– M” is incoherent wrt a denial d that is in PD\PDQ. We know that M” is a model
of rel(Q, Π−). By Proposition A.1 M” is a model of rel(PD?

Q ∪ Q, Π−). Since
d is in PD\PDQ, there is no rule in rel(PD?

Q ∪ Q, Π−) defining atoms that are
relevant to it. Then, M” has no atoms relevant to it and it cannot be violated. We
have reached a contradiction.

– M” is incoherent wrt a denial in d that is in PDQ, e.g. d :← S(x, ta), S(x, fa). We
have that S(x, ta), S(x, fa) are in M” and that M” = M ′[rel(Q, Π−)], therefore
S(x, ta), S(x, fa) are in M ′. But M ′ satisfies PDQ. We have reached a contradic-
tion. 2

Proposition A.3. For every stable model M that belongs to SM(rel(Q, Π−)), such
that M is coherent, i.e. it satisfies the set of program constraints PDQ, there exists a
stable model M ′ that belongs to SM (MS←(Π)), such that M = M ′[rel(Q, Π−)].
2

Proof. M is in SM(rel(Q, Π−)) then by lemma A.2, there exists a stable model M”
in SM (MS(Π−)), such that M = M”[rel(Q, Π−)]. M is coherent, therefore M”
is coherent as well. Then, since M” is coherent wrt PDQ, it will also be a model
of MS(Π−) + PDQ. Now, since MS(Π−) does not have rules for predicates in
PD r PDQ, then M” is also a model ofMS←(Π) =MS(Π−) + PD . 2

Proof of Theorem 2: In order to prove the soundness and completeness of MS ap-
plied over disjunctive programs with program denial constraints, and having proposi-
tions A.1, A.2 and A.3 we just need to prove that: rel(Q, Π) ∪ PDQ ≡Q Π , where
Π = Π(DB , IC ,Q), under both cautious and brave semantics. Note that we need to
add PDQ to rel(Q, Π) since in the previous propositions we are referring to coherent
models only.

It is easy to see that the ground program Π can be split into a bottom program
Πb = (rel(Q, Π) ∪ PDQ) and a top program Πt = (Π \ Πb) [26]. Using as a
splitting set all the ground atoms with predicates connected to the query predicates,
where the constants in the query need to be appropriately propagated. This implies
that the programs can be hierarchically evaluated in the following way: the models of
program Π are SM(Π) =

⋃
M SM(M ∪Πt), for each stable model M in SM(Πb).

The results follows by the fact that for each predicate q inQ, SM(Π)[q] = (SM(Π)
[rel(Q, Π)]) [q]. In fact, it can be shown that SM(Π)[rel(Q, Π)] = SM(rel(Q, Π)∪
PDQ)). Then, for each predicate q in Q, the set of grounds rules having q in the head
is in rel0(Q, Π) ⊆ rel(Q, Π). 2

Proof of Proposition 3: We call “coherent” models the models that satisfy the program
denials, and “incoherent” the ones that do not. By construction we know that all the
models of Π(DB , IC) will be coherent and that an incoherent model of Π ′′(DB , IC)
will have the atom inc. It is easy to see that SM(Π(DB , IC)) ⊆ SM(Π ′′(DB , IC))
and that SM(Π ′′(DB , IC)) r SM(Π(DB , IC)) has only incoherent models. That is
because, program Π ′′(DB , IC) has extra models that are incoherent wrt the the pro-
gram denials in Π(DB , IC). In addition, Anscoh is the set of answers for a given query

Q, obtained from the intersection of coherent models of a program Π ′′(DB , IC))7, and
Ansinc is the set of answers obtained from the intersection of incoherent models of Π ′′.
Since all the coherent models of Π ′′(DB , IC) are models of Π(DB , IC) and since
SM(Π(DB , IC)) ⊆ SM(Π ′′(DB , IC)) we have that Anscoh corresponds exactly to
the cautious answers to query Q obtained from program Π(DB , IC). Proving that the
cautious answers obtained from Π ′′(DB , IC) are the same as the ones obtained from
Π(DB , IC) is equivalent to prove that Anscoh ∩ Ansinc = Anscoh. This implies that
the answers from the incoherent models will not affect the results obtained from the
coherent models. To prove this, is the same as proving that Anscoh ⊆ Ansinc.

By simplicity let us assume we have a query of the form Q : Ans(x) ← P (x).
Then, Π(Q) : Ans(x)← P (x, t??), and Π ′′(Q) contains rules: Ans(x)← P (x, t??);
Ans(x)← P (x, t?).

Let us suppose for the sake of contradiction, that there exists a tuple Ans(c̄) that
is in Anscoh and Ans(c̄) is not in Ansinc. In order for that to happen, coherent mod-
els satisfy both atom P (c̄, t??), and P (c̄, t?), and they does not satisfy atom P (c̄, fa).
In addition, there exists an incoherent model Minc that satisfies P (c̄, ta), and P (c̄, fa)
and such that Ans(c̄) is not in Minc. Since P (c̄, ta) is in Minc, then P (c, t?) is in
Minc. But, Minc also satisfies the rule Ans(x)← P (x, t?) from Π ′′(Q) and therefore
Ans(c̄) is in Minc. We have reached a contradiction. 2

Proof of Proposition 4: Let Π ′ denotes the ground version of program Π(DB , IC ,Q)↓

Q. It is easy to see that the ground program Π(DB , IC ,Q) can be split into a bottom
program Πb = Π ′ and a top program Πt = (Π \Πb) using as a splitting set [26], all
the database facts associated to predicates that are connected with the query predicates
in the graph G(IC). This implies that the programs can be hierarchically evaluated in
the following way: the models of program Π are SM(Π) =

⋃
M SM(M ∪ Πt), for

each stable model M in SM(Πb).
Given the fact that program Πt does not have rules whose predicates are related

with the query predicates, then extensions for the Ans predicate (which collect the
answers to query Q) can be obtained by using only the rules from the bottom program
Πb. Then, from the computation of the stable models of program Π , all the models
contain the extensions of Ans predicate. Then, we conclude that Π(DB , IC ,Q) ↓Q
and Π(DB , IC ,Q) retrieve the same cautious/brave answers to query Q. 2

7 Cautious answers are the tuples obtained from the intersection of all stables models of a repair
program.

