The Consistency Extractor System: Querying
Inconsistent Databases using Answer Set Programs

Monica Caniupan L eopoldo Bertossi
Universidad del Bio-Bio Carleton University
Departamento de Sistemas de Informacion School of Comfgience
Concepcion, Chile. Ottawa, Canada.
mcaniupa@ubiobio.cl bertossi@scs.carleton.ca

Abstract. We present th€onsistency Extractor Systgi@onsEy that usesan-
swer set programmingp compute consistent answers to first-order queries posed
to relational databases that may be inconsistent wrt théagiity constraints.
Among other featuresConsEx implements anagic setdechnique to evaluate
queries via disjunctive logic programs with stable modehaetics that specify
the repair of the original database. We describe the metbgg@nd the system;
and also present some experimental results.

1 Introduction

For several reasons, databases may become inconsisteettaih integrity constraints
(ICs) they are supposed to satisfy [1, 6]. However, in mogteitases only a small por-
tion of the database violates the ICs, and the inconsisegabdse can still be queried
and give us useful and correct information. In order to cti@rize this correct data, the
notion of consistent answdpb a query was introduced in [1], along with a mechanism
for computing those answers.

Intuitively, an answer to a quer® in a relational database instanbes consistent
wrt a set/C of ICs if it is an answer t@& in every repair ofD, where a repair oD is an
instance over the same schema that satigfieand is obtained fronD by deleting or
inserting a minimal set -under set inclusion- of whole databtuples. More precisely,
if a database instance is conceived as a finite set of grownasathen for a repaib’
of D wrt IC it holds: (a)D’ satisfiesIC, denotedD’ = IC, and (b) the symmetric
differenceDA D’ is minimal under set inclusion [1].

The algorithm for consistent query answering (CQA) in [1h&sed on a first-order
query rewriting of the original query. The new query is posethe original database,
and the usual answers are the consistent answers to theabmgiery. This algorithm
has limitations wrt the class of ICs and queries it can har@@A based on first-order
query rewriting was later extended [17, 22, 27], but it iff Bthited in its applicability
(cf. Section 6), which is explained by the intrinsic data @bemity of CQA (cf. [6, 7]
for surveys in this direction).

In several papers [2, 25, 3, 4, 20, 9, 10], database repaies theen specified as
the stable models of disjunctive logic programs with stabtelel semantics [23] (aka.
answer set programslt turns out that the data complexity of query evaluaticont
disjunctive logic programs with stable model semantic$ fi8tches the data complex-
ity of CQA. In this line, the approach in [10] is the most gealeand also the more
realistic, in the sense that it takes into consideratiosipdes occurrences of null values
and the way they are used in real database practice, andrthsalues are also used
to restore consistency wrt referential ICs.

In ConsExwe implement, use and optimize the repair logic programsdéhtced in
[10]. In consequenc&ongExcan be used for CQA wrt arbitrary universal ICs, acyclic

sets of referential ICs, and NOT-NULL constraints. The ipgesupported are Data-
log queries with negation, which goes beyond first-orderigse Consistent answers
to queries can be computed by evaluating queries againstfaér programs, €.g. us-
ing the DLV system, that implements the stable model semantics ofrdigye logic
programs [28].

The ConsExsystem implements the most general methodology for CQA ket t
class of ICs and queries that can be handled. To achievedhig@pnsExcomputes and
optimizes the logic programs that specify database repairspresent queries. These
programs are internally passed as input®Lt¥, which evaluates them. All this is done
in interaction with IBM DB2 relational DBMSConsEx can be applied to relational
databases containing NULL, and all the first-order ICs armh{aggregate) queries
used in database practice and beyond.

Using logic programs for CQA in a straightforward manner may be the most
efficient alternative. As shown in [12], a more efficient waygo is to apply the so-
calledmagic set§MS) techniques, that transform the combination of the gpesgram
and the repair program into a new program that, essent@ilytains a subset of the
original rules in the repair program, those that are relet@mavaluate the query.

Classically, MS optimizes the bottom-up processing of gsein deductive (Dat-
alog) databases by simulating a top-down, query-directatiiation [5, 15]. More re-
cently, the MS techniques have been extended to logic pnogykaith stable models
semantics [21, 24, 18, 26]. In [12] it was shown how to adopt adapt those tech-
niques to our repair programs, resulting in a sound and cetepS methodology for
the repair programs with program constraints. In Sectiowe briefly describe this
particular MS methodology, which is the one implementechm@onsEx system. In
Section 5, we show that the use of MS in the evaluation of @gémproves consider-
ably the execution time of queries.

In this paper we describe both the methodologies implendent€onsEx (more
details about them can be found in [12]), and the featurestionalities, and perfor-
mance of this system (again, more details and proofs oftsesah be found in [13]).

2 Preiminaries

We consider a relational database schetha: (U, R, B), wherel{ is the possibly in-
finite database domain withull € U, R is a fixed set of database predicates, each of
them with a finite, and ordered set of attributes, &b a fixed set of built-in pred-
icates, like comparison predicates, e{g., >,=,#}. There is a predicatésNull(-),
and IsNull(c) is true iff ¢ is null. Instances for a schemd are finite collectionsD
of ground atoms of the forn®(c4, ..., ¢,,), calleddatabase tuplesvhereR € R, and
(c1, ..., cpn) is atupleof constants, i.e. elements &t The extensions for built-in pred-
icates are fixed, and possibly infinite in every databasaumst There is also a fixed
setIC of integrity constraints, that are sentences in the firdepfanguageC(X') de-
termined byY'. They are expected to be satisfied by any instance fdsut they may
not.

A universal integrity constrairis a sentence if(X) that is logically equivalentto a
sentence of the form [10}z (AL, Pi(z:) — Vj—, Q;(5;)V ¢), whereP;,Q; € R,
=", %, y; €z andm > 1.Hereyp is a formula containing only disjunctions
of built-in atoms from5 whose variables appear in the antecedent of the implication

We will assume that there exists a propositional afaise € /5 that is always false in
the database. Domain constants different framy may appear in a UIC. Aeferential
integrity constraint(RIC) is a sentence of the forivz(P(z) — 3z Q(y, 2)), where

y C zand P, € R. A NOT NULL-constraint (NNC) is a denial constraint of the
form: vz (P(z) A IsNull(z;) — false), wherex; € Z is in the position of the attribute
that cannot take null values.

Notice that our RICs contain at most one database atom indhsequent. E.g.
tuple-generating joins in the consequent are excludedttd@ads due to the fact that
RICs will be repaired using null values (for the existentiatiables), whose partici-
pation in joins is problematic. It would be easy to adapt oethndology in order to
include that kind of joins as long as they are repaired usthgrovalues in the domain.
However, this latter alternative opens the ground for uittidaslity of CQA [11], which
is avoided in [10] by using null values to restore consisyenc

Based on the repair semantics and the logic programs irtgsatlin [10], CQA
as implemented ifConsEx works for RIC-acyclicsets of universal, referential, and
NNCs. In this case, there is a one-to-one correspondenaebptthe stable models
of the repair program and the database repairs [10]. That af $€s is RIC-acyclic
essentially means that there are no cycles involving RIE$X2, 10] for details). For
example,/C = {Vz(S(z) — Q(x)),Vz(Q(x) — S(x)),Va(Q(x) — IyT(z,y))} is
RIC-acyclic, whereagC’ = IC' U {Vxy(T(x,y) — Q(y))} is not, because there is a
cycle involving the RICVz(Q(x) — JyT'(x,y)). In the following, we will assume that
IC is a fixed, finite and RIC-acyclic set of UICs, RICs and NNCs.akathase instance
D is said to beconsistentf it satisfies/C'. Otherwise, it ignconsistentvrt IC.

In particular, RICs are repaired by tuple deletions or tupertion with null values.
Notice that introducing null values to restore consistemeyes it necessary to modify
the repair semantics introduced in [1], which does not aersRICs or null values.
This is needed in order to give priority to null values ovesittary domain constants
when restoring consistency wrt RICs. It becomes neceseanotify accordingly the
notion of minimality associated to repair as shown in théofeing example (cf. [10]
for details).

Example 1.The database instande = {P(a, null), P(b, c), R(a,b)} is inconsistent
wrt IC: V ay (P(x,y) — 3zR(x, z)). There are two repairsdd, = {P(a, null),
P(b,c), R(a,b), R(b, null)}, with A(D, D1) = {R(b, null)}, andDs = { P(a, null),
R(a,b)}, with A(D, Ds) = {P(b,c)}. For everyd € U ~ {null}, the instanceDs; =
{P(a,null), P(b,c), R(a,b), R(b,d)} is not a repair, because it is not minimal. O

Database repairs can be specified as stable models of digpitogic programs. The
repair programs introduced in [10] build on the repair peogs first introduced in [3]

for universal ICs. They use annotation constants to indita atoms that may become
true or false in the repairs in order to satisfy the ICs. Edomaof the formP(a) (except

for those that refer to the extensional database) receivesfithe annotation constants.

In P_(a, t,), the annotation, means that the atom is advised to made true (i.e. inserted
into the database). Similarlf, indicates that the atom should be made false (deléted).

! For simplification purposes, we assume that the existeri@bles appear in the last attributes
of Q, but they may appear anywhere els&jn

2 |n order to distinguish a predicafe that may receive annotations in an extra argument from
the same predicate in the extensional database, that dbesntain annotations, the former is
replaced byR .

For each IC, a disjunctive rule is constructed in such a way tie body of the rule
captures the violation condition for the IC; and the headtdless the alternatives for
restoring consistency, by deleting or inserting the pguditing tuples (cf. rules 2. and
3. in Example 2).

Annotationt* indicates that the atom is true or becomes true in the progtam
introduced in order to keep repairing the database if thexénderacting ICs; and e.g.
the insertion of a tuple may generate a new IC violation. Iginatoms with constant
t** are those that become true in the repairs. They are use toffdhd database atoms
in the repairs. All this is illustrated in the following exgthe (cf. [10] for the general
form of the repair programs).

Example 2.Consider the database schea= {S(ID, NAME), R(ID, NAME),
T(ID,DEPTO), W(ID, DEPTO, SINCE)}, the instanceD = {S(a,c),S(b,c),
R(b, ¢), T(a, null), W (null,b,c)},andIC = {Vay(S(z,y) — R(x,y)), Vey(T (z,y)
— AWz, vy, 2)), Veyz(W (z, y, z) AsNull(z) — false)}. The repair progran/ (D
IC) contains the following rules:
1. S(a,c). S(b,c). R(b,c). T(a,null). W(null b, c).
2. S(z,y,fa) V R(z,y,ta) — S(z,y,t"), R(z,y,fa),x # null, y # null.

S(z,y,fa) V R(z,y,ta) «— S(x,y,t*), not R(z,y),z # null,y # null.
3. L(z,y,fa) V Wz, y, null, ta) «— T(z,y,t*), not auz(z,y),x # null,y # null.

auz(z,y) — Wz, y, z,t*), not W.(x,y,z,fa), z # null,y # null, z # null.

4. W (x, y,z fa) — Wiz,y,z,t*),x = null.
5.8(z,y,t*) «— S(z,vy).

S(z,y,t") — S(z,y, ta).

Similarly for R, T andW
6. S(z,y,t*) « S(z,y,t*), not S(z,y,fa). (Similarly for /2, 7" an)

7' — W(x7y7zyta)7 W(x7y7zyfa)'

The rules in 2. establish how to repair the database wrt thiel@r by makingS|(z, y)
false orR(z, y) true. Conditions of the formx # null in the bodies are used to capture
occurrences of null values in relevant attributes [10]. Tlies in 3. specify the form
of restoring consistency wrt the RIC: by deletifigz, y) or insertingW (z, y, null).
Here, only the variables in the antecedent of the RIC camketrull values. Rule 4. in-
dicates how to restore consistency wrt the NNC: by elimingll («, y, 2). Finally, the
program constrain®. filters out possibl@on-coherenstable models of the program,
those that have ail’-atom annotated with both, andf,.® Relevant program con-
straints can be efficiently generated by usirdppendency grapfi2], which captures
the relationship between predicates in the ICs (cf. Seet)on

The program has two stable modélsit, = {S(a, ¢, t*), S(b,c, t*), R(b, ¢, t*), T(a,
null, t*), W.(null, b, ¢, t*), W.(null, b, ¢, fa), R(a, ¢, ta), S(a, c, ™), 8(b, ¢, t*™), R(b, ¢, t™™),
R(a,c,t*), R(a,c,t*™), L(a, null, t**)}, M2 = {S(a,c,t*), S(b,c,t*), R(b,c,t*), T(a,
null, t*), W.(null, b, ¢, t*), W.(null, b, c,fa), S(a, ¢, fa), S(b, c, t**), R(b, ¢, t*™), L(a, null,
t**)}. Thus, consistency is recovered, accordinghty by inserting atomR(a, ¢)
and deleting atoniV (null, b, c); or, according toM, by deleting atoms.S(a, ¢),
W (null, b, c)}. Two repairs can be obtained by concentrating on the umeefiatoms

% For the program in this example, given the logical relatidpsetween the ICs, this phe-
nomenon could happen only for predicdtg as analyzed in [12].
4 In this paper, stable models are displayed without progetsf

in the stable modeld:S(a, ¢), S(b, ¢), R(b, ¢), R(a,c), T (a, null)} and{S(b, c), R(b,
¢), T(a,null)}, as expected. m|

As established in [4, 10], repair programs are a correctiipatton of database repairs
wrt RIC-acyclicsets of UICs, RICs, and NNCs.

To compute consistent answers to a qué&rythe query is expressed (or simply
given) as a logic program, e.g. as non-recursive Datalograro with weak negation
and built-ins if Q is first-order [29]. In this program the positive literals thie form
P(3), with P an extensional predicate, are replacedt¥, t**), and negative literals
of the form not P(3) by not B(3,t**). We obtain a query prografi (Q), that is
“run” together with the repair progradd (D, IC). In this way, CQA becomes a form
of cautiousor skepticalreasoning under the stable models semantics. Notice that fo
fixed set of ICs, the same repair program can be used with @vstignce (compatible
with the schema) and with every query we want to answer ctamlg, so it can be
generated once, arigbnsEx will store it.

For the repair program in Example 2, the Datalog qu@ry Ans(x) «— S(b,x),
becomes the prograiii (Q) consisting of the ruleAns(z) «— S(b, z, t**). The com-
bined program/I(D, IC, Q) := II(D,IC) U II(Q) has two stable models, both of
them containing the atomMns(¢). Therefore, the consistent answerQas (c).

3 Magic Setsfor Repair Programs

The magic set (MS) techniques for logic programs with stafdelel semantics take as
an input a logic program -a repair program in our case- anceaycgxpressed as a logic
program that has to be evaluated against the repair proghaenoutput is a new logic
program, themagic program with its own stable models, that can be used to answer
the original query more efficiently. As shown in [12], theldtamodels of the magic
program are relevant in the sense that they contain exten$iw the predicates that
are relevant to compute the query. Also, they are only dyriamputed, i.e. each of
them can be extended to a stable model of the original pro@igamoring the “magic”
predicates introduced in the magic program). This happeoatse the magic program
contains special auxiliary rules, the magic rules, thatguhe course of query eval-
uation, avoiding unnecessary instantiation of rules as@ eonsequence, achieving a
faster computation of stable models. In this way, we mayiob&ss and smaller sta-
ble models. The stable models of the magic program are exghéeiprovide the same
answers to the original query as the models of the prograchas@put to MS.

The magic sets techniques for logic programs with stableahseimantics intro-
duced in [21], for the non-disjunctive case but possiblytiatgied negation, and in
[24] (improved in [18]), with disjunction but stratified natjon, are sound and com-
plete, i.e. they compute all and only correct answers forghery. In [26] a sound
but incomplete methodology is presented for disjunctivegpams with program con-
straints of the form— C(Z), whereC(Z) is a conjunction of literals (i.e. positive or
negated atoms). The effect of these programs constraitatsliscard models of the rest
of the program that make true the existential closuré€'¢f).

Our repair programs are disjunctive, contain non-stratifiegation, and have pro-
gram constraints; the latter with only positive intensioliterals in their bodies. In
consequence, none of the MS techniques mentioned above beulirectly applied
to optimize our repair programs. However, as shown in [12]dlso [13] for details),

the following sound and complete MS methodology can be edpb repair programs
(with program constraints): First, the program constsaare removed from the repair
program. Next, a combination of the MS techniques in [18,i24pplied to the re-
sulting program. The disjunction is handled as in [18], aedation as in [21]. This
combination works for repair programs because in them, iyugpeaking, negation
does not occur in odd cycles. For this kind of programs, soaesl and completeness
of MS can be obtained from results in [18, Z1fFinally, the program constraints are
put back into themagic programobtained in the previous step, enforcing the magic
program to have only coherent models.

The MS techniques currently implementeddaV cannot be applied to disjunctive
programs with program constraints. On the other side, wheptogram does not con-
tain program constraintBLV applies MS internally, without giving access to the magic
program. As a consequence, the application of MS WitV to repair programs (with
program constraints) is not straightforwafionsEx that useDLV for evaluation of
logic programs, solves this problems as follows: Fi@insEx produces a magic pro-
gram for the combination of the query and repair programbiiafly mentioned above)
without considering the program constraints. Next, thgingl program constraints are
added to the magic program. Finally, this expanded magigraru is given tdLV for
evaluation, as any other logic program. This is the MS methagy implemented in
the ConsExsystem, which is correct for repair programs. An examplewehows this
process in detalil.

The MS technique sequentially performs three well definedssadornment, gen-
eration and modificationwhich will be illustrated using Example 2 with the query
programAns(z) < S(b, x, t**).

The adornmenttep produces a neadornedprogram, in which each intensional
(defined) predicaté takes the formP4, whereA is a string of letter$, f, for bound
andfree resp., whose length is equal to the arityfafStarting from the query, adorn-
ments are created and propagated. HIf$Q) : Ans(xz) «— S.(b,z,t*) becomes:
Ans! (x) — S27(b, z,t**), meaning that the first and third argumentsofre bound,
and the second is a free variable. Annotation constantdweagsibound.

The adorned predicats®’® is used to propagate bindings (adornments) onto the
rules defining predicaté, i.e. rules in 2., 5., and 6. As an illustration, the rules in
5. becomeS®/t(z,y,t*) «— S(x,y) and S%b(z,y,t*) — Sb/0(x y, ta), resp. Ex-
tensional (base) predicates, eSgappearing as(x, y) in the first adorned rule, only
bind variables and do not receive any annotation. Moretiveradorned predicaig’/®
propagates adornments over the disjunctive rules in 2. @benanents are propagated
over the literals in the body of the rule, and to the headdlt&(x, y, t,). Therefore,
this rule become$:5%/%(z,y, fa) vV RYP (2, y, ta), «— S0 (z,y, t*), RYY(2,y,fa).
Now, the new adorned predica’/® also has to be processed, producing adornments
on rules defining predicatB. The output of this step is adorned progranthat con-
tains only adorned rules.

5 Personal communication from Wolfgang Faber. Actuallys thombination is the MS tech-
nique implemented iDLV. Correctness is guaranteed for disjunctive programs wittrati-
fied negation appearing in even cycles, which is what we need.

8 For simplification purposes, conditions of the forng# null are omitted from the disjunctive
rules.

The iterative process of passing bindings is caBe&tbways information passing
strategies(SIPS) [5]. There may be different SIPS strategies, but afy sfrategy
has to ensure that all of the body and head atoms are proc&¥seddllow the strat-
egy adopted in [18], which is implementedDLV. According to it, only extensional
predicates bind new variables, i.e. variables that do noy ca binding already. As
an illustration, suppose we have the adorned prediBaté and the ruleP(z,y, z) v
T(x,y) < R(z),M(x,z), whereR is a extensional predicate. The adorned rule is
PIY (zy, 2) v TT(z,y) « R(z), M/*(z, z). Notice that variable is free according
to the adorned predicate’*/. However, the extensional atof(z) binds this vari-
able, and propagates this binding(z, z), wherez becomesound, producing the
adorned predicata/ /.

The next step is thgeneration of magic ruleghose that will direct the computa-
tion of the stable models of the rewritten program obtainethe previous step. For
each adorned ator?* in the body of an adorned non-disjunctive rule, a magic rule
is generated as follows: (a) The head of the magic rule besdh@magic version of
P4, i.e. magic.P#, from which all the variables labelled within A are deleted. (b)
The literals in the body of the magic rule become the magisivarof the adorned rule
head, followed by the literals (if any) that produced birggion atomP4. For example,
for the adorned literab */®(z, y, t,) in the body of the adorned rulg®/®(x, y, t*) «
Sz, y,ta), the magic rule is magic.S%/%(x,ta) « magic.S®/*(z,t*). For dis-
junctive adorned rules, first, intermediate non-disjurectules are generated by mov-
ing, one at a time, head atoms into the bodies of rules. Neagiarules are gener-
ated as described for non-disjunctive rules. For examptehte rule S/ (z,y, fa) v
RYY(z,y,ta) « S%b(x,y,t*), RY?(z,vy, fa), we have two non-disjunctive rules: (a)
SOz y, £a) «— R (2, y,ta), SU0(2,y,), REP(2,y,fa); and (D)RYY(z, y, ta)

— Sz, y, fa), SYO(z,y, t*), RV (2, y,£,). There are three magic rules for rule
(@): magic RY(z,ta) «— magic.S /0 (z,£a); magic. 47 (x,t*) «— magic.S®/b(x,
f.); andmagic R (z, £a) «+ magic.S%/t(z, fa).

At this step also thenagic seed atoris generated. This corresponds to the magic
version of theAns predicate from the adorned query rule, e.g. for I’Abesf(:v) —
SbIb(z, y, t**), the magic seed atom isagic Ans’ .

The last phase is thmodification stepwhere magic atoms constructed in the gen-
eration stage are included in the body of adorned rules., Tousach adorned rule, the
magic version of its head is inserted into the body. For mstathe magic versions of
the head atoms in rul®b/(x, y, £.) VR (2, y, ta) « S0 (2, y,t*), R (z,y, fa),
aremagic.S*(z, f.) andmagic. RY*(x, t,), resp., which are inserted into the body
of the adorned rule, generating the modified rue/?(z, y, fa) VR (z,y,t.) «—
magic.StT(x, £,), magic RPY (2, t4), St (z,y,t*), R (z, vy, fa). From the modi-
fied rules the rest of the adornments are now deleted. Theigprédvious modified rule
becomesi(z,y, fa) VR(z,y, ta) « magic.S%b (x, f,), magic RY®(x,t,), S(z,y, t*),
R(z,y,fa).

The final, rewritten, magic program consists of the magic @odlified rules, the
magic seed atopand the facts of the original program. In our case, it alst&ios the
set of original program constraints that were not touchethduhe application of MS.
Since in the MS program only magic atoms have adornmentgrtiggram constraints
can be added as they come to the program. The progva$iii7) below is the magic

program for the prograni/ consisting of the query prograsns(z) «— S(b, x,t**)
plus the repair program in Example 2.
Program MS(IT): magicAns’.

magian’fb(b, t**) — magicAns’ magic. S (x,fa) «— magic RY(x,ta).

magic.S*(x,ta) «— magic. S (x,t*). magic. S (x,t*) — magic R®° (x,ta).

magic.S* (x,t*) «— magic.S* (x,t*). magic. R4 (x, fa) — magic RY® (x,ta).

magic.StT (x, fa) — magic. ST (z, t*). magic.RY (x,ta) — magic RY®(z,t%).
magic.RY? (z,ta) — magic.S " (x, fa). magic. R4 (z,t*) «— magic RY® (z,t*).
magic.St7 (x,t*) «— magic.S*b(z, fa). magic. R®° (z, fa) «— magic R®®(z,t**)
magic R*° (x,£2) «— magic. S (x, fa). Ans(z) — magicAns’, S (b, z,t**).

S(x,y,fa) V R(x,y,ta) «— magic.Sb(x,fa), magic R (x,ta), S(z,y,t"), R(x,y, fa).
S.(x,y,fa) VR (x,y, ta) — magic. S (x,£2), magic R (x, ta), S.(z,y, t*), not R(x,y).
S.(z,y,t*) «— magic.S¥(x,t*), S(x,y,ta). S(z,y,t*) — magicS T (x,t*), S(z,y).
R(z,y,t*) — magic RY*(x,t*), R(z,y,ta). R(z,y,t*) — magic RY " (z,t*), R(z,y).
S(x), not S(x,y, fa).
R(), not R(z,y,fa).

z,y,t*%) — magic.St (z, t**), S (x, v,
z,y,t*%) — magic R4 (z,t%), R(z, y,
— W.(z,y,z,ta), W(x,y, 2, fa).

Notice thatMS(IT) contains rules related to predicatgsk, but no rules for pred-
icatesT’, W, which are not relevant to the query. Therefore the programsicaint will
be trivially satisfied. ProgramM S (IT) (with the same facts of the original repair pro-
gram) has only one stable modal = {S(b, ¢, t*), S(b, ¢, t**), Ans(c)} (displayed
here without the magic atoms), which indicates throughlits predicate thafc) is the
consistent answer to the original query, as expected. Weaathat the magic program
has only those models that are relevant to compute the queswyeas. Furthermore,
these are partially computed, i.e. they can be extendedldestnodels of the program
II(D, IC, Q). More precisely, except for the magic atoms, madiélis contained in
every model of the original repair prograff(D, IC, Q) (cf. Section 2)’

t
t

4 System Description

In Figure 1, that describes the general architectu@arfsEx theDatabase Connection
module receives the database parameters (database nemendpassword) and con-
nects to the database instance. We show in Figure 2 (a) theectbon screen; and in
Figure 2 (b), the main menu, obtained after connecting tal&tiabase.

TheQuery Processingiodule receives the query and ICs; and coordinates the tasks
needed to compute consistent answers. First, it checkgeguder syntactic correctness.
Currently in ConsEx first-order queries can be written as logic programs inh@at
standardPDLV notation, or as queries in SQL. The former correspond tonecuossive
Datalog queries with weak negation and built-ins, whichudes first-order queries.
SQL queries may have disjunction (ildNI ON), built-in literals in theWHERE clause,
but neither negation nor recursion, i.e. unions of conjiweajueries with built-ins.

After a query passes the syntax check, the query programmisrgied. FoDLV
queries, the query program is obtained by inserting the t@tioo t** into the literals
in the bodies of the rules of the query that do not have a digfimiih the query program
(but are defined in the repair program). For SQL queries, tieeygprogram is obtained

"In [13] it has been shown that the magic program, and ther@igipair program arquery
equivalentunder both brave and cautious reasoning.

ConsEx System

v

Repair Program
Construction

Relevant
Predicates
Identification

Database
Connection

v

MS
Rewriting

Consistent
Answers

Query

y Consistency
Processing

Checking

Dependency

Graph RIC-acyclic

Checking

Answers
Collection

c

Comect to Database Menu Dlease, choose atask

DB Edilionsii N
Database Name : | | [e———— \.'
™ . | | Mer——reaermeruar————;. \.'
User Mame : | | T .
Password : | | b

Log Cut
@ (b)

Fig. 2. ConsEx Database Connection and Main Menu

by first translating queries into equivalent Datalog proggaand then by adding the
annotationt** to the program rules as for tha V queries.

Given a query, there might be ICs that are not related to tleeygivore precisely,
their satisfaction or not by the given instance (and theasponding portion of the
repairs in the second case) does not influence the (standaahsistent) answers to
the query. In order to capture the relevant ICs, Redevant Predicates Identification
module analyzes the interaction between the predicatbgiguery and those in the ICs
by means of alependency grapfi2], which is generated by thBependency Graph
Constructiormodule. We can use our running example to describe thisreand other
system’s components.

The dependency gragh(IC) for the ICs in Example 2 contains as nodes the predi-
catesS, R, T, W, and the edgeiS, R), (T, W). Then, for the queryins(x) « S(b, x)
the relevant predicates aftand R, because they are in the same component as the
predicateS that appears in the query. Thus, the relevant IC to che¢ki$S (z, y) —
R(z,y)), which contains the relevant predicates (cf. [12] for mcetads).

Next, ConsExchecks if the database is consistent wrt the ICs that areanet¢o the
query. This check is performed by t®nsistency Checkinmodule, which generates

an SQL query for each relevant IC, to check its satisfact@mn.example, for the rele-
vant ICVzy(S(z,y) — R(z,y)) identified beforeConsEx generates the SQL query:
SELECT » FROM S WHERE (NOT EXI STS (SELECT * FROM R WHERE R. I D =

S. 1D AND R NAME = S.NAME) AND ID IS NOT NULL AND NAME |'S NOT NULL),
asking for violating tuples.

If the answer is empty;onsEx proceeds to evaluate the given query directly on the
original database instance, i.e. without computing rep&or example, if the query is
Q: Ans(z) « S(b,7), the SQL query SELECT NAME FROM S WHERE | D="b’ ",
is generated bfonsExand posed td). However, in Example 2 we do ha{éa, ¢)}
as the non-empty set of violations of the relevant IC. In eguence, the database is
inconsistent, and, in order to consistently answer theyg@erthe repair program has
to be generated.

TheRIC-acyclic Checkingnodule uses the dependency graph to check if set of ICs
is RIC-acyclic. If it is, the generation of programs is avoidedd anwarning message
is sent to the user. Otherwise, tRepair Program Constructiomodule generates the
repair program, which is constructed “on the fly”, that i$tla¢ annotations that appear
in it are generated by the system, and the database is noteaffelhe facts of the
program are not imported from the database DtmsEx Instead, suitable sentences to
import data are included into the repair program, as fatédd and understood RLV.

The repair program may contain, for each extensional pagelie, the import sen-
tence#import(dbName, dbUser, dbPass, “SELECT * FROM P”, P), retrieving the
tuples from relationP that will become the facts for predicatein the program. As a
result, when the program is evaluatedblV, the database facts will be imported di-
rectly into the reasoning system. These data import seeseare required at this stage
only if ConsEx will run the original repair program without any magic sefgimiza-
tion, which is an option given by the system.

The MS Rewritingmodule generates the magic version of a program. It includes
at the end appropriate database import sentences, whigpeasrated by a static in-
spection of the magic program. This requires identifyingtfim the rule bodies, the
extensional database atoms (they have no annotation atsjstdext, for each of these
extensional atoms, it is checked if the magic atoms will htne effect of bound-
ing their variables during the program evaluation. Thattiss checked if the con-
stants appearing in the query will be pushed down to the prodgrefore query evalua-
tion. For example, in the magic programS(I1) for the queryAns(z) «— S(b,)
shown in Section 3, the following rules contain databasenatda) S_(x,y, t*) «—
magic.St(x,t%), S(z,y); and (b) R.(z,y,t*) « magic. R%*(z,t*), R(z,y). In
(a), the variabler in the extensional atorfi(x, y) will be bound during the evaluation
due to the magic atommagic.S®/*(x, t*) appearing in the same body. This magic atom
is defined in the magic program by the rutegic.S/(z,t*) «— magic.S*/*(z,t**),
where atommagic.S 7 (x, t**) is defined in its turn by the ruleiagic.S7 (b, t**) «—
magic.Ans’. Sincemagic.Ans’ is always true in an MS programyagic.S2/® (b, t**)
will be true with the variable: in S(z, y) eventually taking valué. As a consequence,
the SQL query in the import sentence for predicatavill be: “SELECT * FROM S
VWHERE | D = ‘o’". A similar static analysis can be done for rule (b), genatptin
import sentence for relatioR. The generated import sentences will retrieve iDtd/
only the corresponding subsets of the relations in the datb

10

The resulting magic program is evaluatedDhV, that is automatically called by
CongEx and the query answers are returned toAlnswer Collectiormodule, which
formats the answers and returns them to the user as the eomsiaswers.

5 Experimental Evaluation

Several experiments on computation of consistent answegsi¢ries were run with
ConsEx|In particular, it was possible to quantify the gain in extemutime when using
magic sets instead of the direct evaluation of the repagams. The experiments were
run on an Intel Pentium 4 PC, processor of 3.00 Ghz, 512 MB diRand with Linux
distribution UBUNTU 6.0. The database instance was storéad IBM DB2 Universal
Database Server Edition, version 8.2 for Linux. All the piaogs were run in the version
of DLV for Linux released on Jan 12, 2006.

We considered a database schema with eight relations, agtdod I€s composed
of two primary key constraints, and three RICs. In order talyze scalability of CQA
trough logic programs, we considered two databases inssdnG and D5, with 3200
and 6400 stored tuples, resp. The numNeof inconsistent tuples, i.e. participating in
an IC violation varied betwee20 and400.8

Here, we report the execution time for two conjunctive gegrin both instances.
Thefirst query is of the formdns(z) < P(y), R(Z), withz C gUZz, with free variables
(an open query), joingj(N z # (), and no constants. The second query contains joins
and is also partially-ground, like the query used in Sec8oBoth queries fall in the
class ofTreequeries for which CQA is tractable under key constraingy.[Rlowever,
since we are also considering RICs, which are repaired tarting tuples with null
values, it is not possible to use the polynomial time al¢ponitfor CQA presented in
[22]. Even more, it is not clear that the tractability result22] carries over to the
queries and ICs used in our experiments.

In the chartsR&Q indicates the straightforward evaluation of the repairgpamn
combined with the query program, whereas its magic seteigation is indicated with
MS. Figure 3 shows the running time for the first query in the tagiances. We can see
that MS is faster than the straightforward evaluation. Nor= 200 (in both database
instances), the MS methodology returns answers in lesstdraseconds, while the
straightforward evaluation returns answers after one taindoreover, the execution
time of the MS methodology is almost invariant wrt percestafjinconsistency. De-
spite the absence of constants in the query, MS still offesghastantial improvement
because the magic program essentially keeps only the rmitesetations that are rele-
vant to the query, which reduces the ground instantiatich@program bypLV.

Figure 4 shows the execution time for the second, part@tytnd query in both
database instances. Again, MS computes answers muchtfastethe straightforward
evaluation. In this case, MS has an even better performameeadthe occurrence of
constants in the query, which the magic rules push down tddltebase relations. This
causes less tuples to be imported ibtbV, and the ground instantiation of the magic
program is reduced (wrt the original program).

Furthermore, MS shows an excellent scalability. For instaiMS computes an-
swers to queries from database instanBesnd D- in less than ten seconds, even with
a databasé) that contains twice as many tuplesias.

8 The files containing the database schema, ICs, the quenigsha instances used in the exper-
iments are available in http://www.face.ubiobio-ehcaniupa/ConsEx

11

= Fam —ry
M]
50
! ®]
T 40 I L]
o o J|
£ Em
= [: 5
2 20 s M
§ /J Q 0
a1 i) .,J_
& 0 : : : :
i . . .
20 10 o 30 40
D 4w 20 S00 40
Namber of nconsistent Tuples Wumber of Inconsistent Tuples

Database Instance D;

Database Instance D,

Fig. 3. Running Time for the Conjunctive Query with Free Variables

—=— Ran —=— R&U
—a— MS —+— M5
50
50 : /ﬂ
W ap /i T
o w
E
E = 30
c / 5
% 20 / 5
B /
ﬁ 10 .,_—I/- g 1o -_—'_'/
0 . . . 0 * * . .
20 00 200 300 400 20 100 0 300 40
Humber of heansistent Tuplas Humber of Incansistent Tuples

Database Instance D; Database Instance D,

Fig. 4. Running Time for the Partially-Ground Conjunctive Queryhiree Variables

6 Conclusions

We have seen that théonsEx system computes database repairs and consistent an-
swers to first-order queries (and beyond) by evaluation gitlprograms with stable
model semantics that specify both the repairs and the qurerder to make query
answering more efficient in practic€ponsEx implements sound and complete magic
set techniques for disjunctive repair programs with progcanstraints [12]. Moreover,
ConsExtakes advantage of the smooth interaction between the psggramming en-
vironment and the database management systems (DBMS)abkedyDLV. In this
way, it is possible to exploit capabilities of the DBMS, suahstoring and indexing.
Furthermore, bringing the whole database iBioV, to compute repairs and consis-
tent answers, is quite inefficient. In our case, it is possiblkeep the instance in the
database, while only the relevant data is imported intodhelprogramming system.

The methodology for CQA based on repair logic programs issggdrenough to
cover all the queries and ICs found in database practicertanid). On the other side,
we know that CQA has a high intrinsic data complexity [16, THe excellent perfor-
mance exhibited by the magic sets techniques makes us tnlCQA is viable and
can be used in practical cases. Most likely real databasestioontain such a high
percentage of inconsistent data as those used in our e>grgsm

Implementations of other systems for CQA have been repdeéare. TheQueca
system [14] implements the query rewriting methodologyspreeed in [1], and can be
used with universal ICs with at most two database atoms {plilisins) and projection-

12

free conjunctive queries. The systétippo[17] implements first-order query rewriting
based on graph-theoretic methods. It works for denial caims and inclusion depen-
dencies under a tuple deletion repair semantics, and pia@jefree conjunctive queries.
The systenConQuer22] implements CQA for key constraints and a non-triviass
of conjunctive queries with projections. Comparisons imtzof performance between
ConsEx and these more specialized and optimized systems, for #@figpclasses of
ICs and queries they can handle, still have to be made.

In ConsEx consistency checking of databases with SQL null valuesepairs that
appeal to SQL null values both follow the precise and gerssadantics introduced in
[10]. However, when queries are answeredCionsEx the query answer semantics is
the usual logic programming semantics that treats nullegsther constant. A seman-
tics for query answering in the presence of SQL nulls thabimatible with the I1C
satisfaction and repair semantics useCionsEx is proposed in [8]. Its implementa-
tion in CongEx is left for future work. We also leave for future work the exsén of
CQA to broader classes of queries, in particular, to agdesmzeries by means of logic
programs as done in [13].

Acknowledgements: Research supported by an NSERC Discovery Grant, and the
University of Bio-Bio (UBB-Chile) (Grant DIUBB 076215 4/R).. Bertossi is Faculty
Fellow of IBM Center for Advanced Studies (Toronto Lab.). e grateful to Claudio
Gutiérrez and Pedro Campos, both from UBB, for their helwie implementation of
algorithms and the interface GonsEx Conversations with Wolfgang Faber and Nicola
Leone are very much appreciated.

References

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Qu&nswers in Inconsistent
Databases. IRroc. ACM Symposium on Principles of Database Systems (FOPACM
Press, 1999, pp. 68-79.

[2] Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets @onsistent Query Answering
in Inconsistent DatabaseBheory and Practice of Logic Programming003, 3(4-5): 393—
424,

[3] Barcelo, P. and Bertossi, L. Logic Programs for Quenyjimgpnsistent Databases. Rmoc.
5th International Symposium on Practical Aspects of Dettlae Languages (PADL 03)
Springer LNCS 2562, 2003, pp. 208-222.

[4] Barcelo, P., Bertossi, L. and Bravo, L. Characterizimgl &£omputing Semantically Cor-
rect Answers from Databases with Annotated Logic and Ans3ats. InSemantics of
DatabasesSpringer LNCS 2582, 2003, pp. 1-27.

[5] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J. MagietS and Other Strange Ways to
Implement Logic Programs (extended abstract)Ptoc. 5th ACM Symposium on Princi-
ples of Database Systems (PODS, 8&}M Press, 1986, pp. 1-15.

[6] Bertossi, L. and Chomicki, J. Query Answering in Incatent Databases. Imogics for
Emerging Applications of DatabaseSpringer, 2003, pp. 43-83.

[7] Bertossi, L. Consistent Query Answering in Databag€3M Sigmod Recordlune 2006,
35(2):68-76.

[8] Bravo, L. Handling Inconsistency in Databases and Datdegration Sys-
tems. PhD. Thesis, Carleton University, Department of Qaewp Science, 2007,
http://homepages.inf.ed.ac.uk/lbravo/Publicatiotms.h

[9] Bravo, L. and Bertossi, L. Consistent Query Answeringleminclusion Dependencies. In
14th Annual IBM Centers for Advanced Studies ConferenceS@2N 2004) 2004, pp.
202-216.

13

(10]

(11]

(12]

(13]

(14]
(15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]
(24]

(25]

(26]

(27]

(28]

[29]

Bravo, L. and Bertossi, L. Semantically Correct Quenysivers in the Presence of Null
Values. InCurrent Trends in Database Technology - EDBT 208fringer LNCS 4254,
2006, pp. 33-47.

Cali, A., Lembo, D. and Rosati, R. On the Decidabilityda@omplexity of Query Answer-
ing over Inconsistent and Incomplete Databases?rot. ACM Symposium on Principles
of Database Systems (PODS 0BLM Press, 2003, pp. 260-271.

Caniupan, M. and Bertossi, L. Optimizing Repair Pragsafor Consistent Query An-
swering. InProc. International Conference of the Chilean ComputereBcé Society
(SCCC 05) IEEE Computer Society Press, 2005, pp. 3-12.

Caniupan, M. Optimizing and Implementing Repair Peags for Consistent Query An-
swering in Databases. PhD. Thesis, Carleton Universitpaitenent of Computer Science,
2007, http://www.face.ubiobio.eVmcaniupa/publications.htm

Celle, A. and Bertossi, L. Querying Inconsistent Datsés: Algorithms and Implementa-
tion. In Computational Logic - CL 20Q@pringer LNCS 1861, 2000, pp. 942-956.

Ceri, S., Gottlob, G. and Tanca, ILogic Programming and DatabaseSpringer-Verlag,
1990.

Chomicki, J. and Marcinkowski, J. On the ComputatioBamplexity of Minimal-Change
Integrity Maintenance in Relational Databases.Iritegrity Tolerance Springer LNCS
3300, 2004, pp. 119-150.

Chomicki, J., Marcinkowski, J. and Staworko, S. ConipgitConsistent Query Answers
using Conflict Hypergraphs. IRroc. 13th ACM International Conference on Information
and Knowledge Management (CIKM OACM Press, 2004, pp. 417-426.

Cumbo, C., Faber, W., Greco, G. and Leone, N. Enhantiagviagic-Set Method for Dis-
junctive Datalog Programs. Broc. 20th International Conference on Logic Programming
(ICLP 04), Springer LNCS 3132, 2004, pp. 371-385.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Cplexity and Expressive Power of
Logic ProgrammingACM Computing Survey2001, 33(3):374-425.

Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Hvation of Logic Programs
for Querying Data Integration Systems. Pnoc. 19th International Conference on Logic
Programming (ICLP 03)Springer LNCS 2916, 2003, pp. 163-177.

Faber, W., Greco, G. and Leone, N. Magic Sets and thepliéation to Data Integration.
Journal of Computer and System Scien@®97, 73(4):584-609.

Fuxman, A., Fazli, E. and Miller, R.J. ConQuer: Effididlanagement of Inconsistent
DatabasesProc. ACM International Conference on Management of Dat&{80D 05),
ACM Press, 2005, pp. 155-166.

Gelfond, M. and Lifschitz, V. Classical Negation in LiogPrograms and Disjunctive
DatabasesNew Generation Computing991, 9:365-385.

Greco, S. Binding Propagation Techniques for the Optition of Bound Disjunctive
Queries. INEEE Transac. on Knowledge and Data En2003, 15(2):368—385.

Greco, G., Greco, S. and Zumpano, E. A Logical FrameworkQuerying and Re-
pairing Inconsistent DatabaseHEEE Transactions on Knowledge and Data Er2p03,
15(6):1389-1408.

Greco, G., Greco, S., Trubtsyna, |. and Zumpano, E. @igttion of Bound Disjunctive
Queries with Constraint3-heory and Practice of Logic Programmir2p05, 5(6):713—-745.
Lembo, D., Rosati, R. and Ruzzi, M. On the First-Orded®&ability of Unions of Con-
junctive Queries over Inconsistent Database<unrent Trends in Database Technology -
EDBT 2006 Springer LNCS 4254, 2006, pp. 358-374.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottloh, Berri, S. and Scarcello, F. The DLV
System for Knowledge Representation and Reason&@M Transactions on Computa-
tional Logicg 2006, 7(3):499-562.

Lloyd, J.W. Foundations of Logic Programmingecond ed., Springer-Verlag, 1987.

14

