
The Consistency Extractor System: Querying
Inconsistent Databases using Answer Set Programs

Monica Caniupan Leopoldo Bertossi
Universidad del Bio-Bio Carleton University

Departamento de Sistemas de Informacion School of ComputerScience
Concepcion, Chile. Ottawa, Canada.
mcaniupa@ubiobio.cl bertossi@scs.carleton.ca

Abstract. We present theConsistency Extractor System(ConsEx) that usesan-
swer set programmingto compute consistent answers to first-order queries posed
to relational databases that may be inconsistent wrt their integrity constraints.
Among other features,ConsEx implements amagic setstechnique to evaluate
queries via disjunctive logic programs with stable model semantics that specify
the repair of the original database. We describe the methodology and the system;
and also present some experimental results.

1 Introduction

For several reasons, databases may become inconsistent wrtcertain integrity constraints
(ICs) they are supposed to satisfy [1, 6]. However, in most ofthe cases only a small por-
tion of the database violates the ICs, and the inconsistent database can still be queried
and give us useful and correct information. In order to characterize this correct data, the
notion ofconsistent answerto a query was introduced in [1], along with a mechanism
for computing those answers.

Intuitively, an answer to a queryQ in a relational database instanceD is consistent
wrt a setIC of ICs if it is an answer toQ in every repair ofD , where a repair ofD is an
instance over the same schema that satisfiesIC and is obtained fromD by deleting or
inserting a minimal set -under set inclusion- of whole database tuples. More precisely,
if a database instance is conceived as a finite set of ground atoms, then for a repairD′

of D wrt IC it holds: (a)D′ satisfiesIC , denotedD′ |= IC , and (b) the symmetric
differenceD△D′ is minimal under set inclusion [1].

The algorithm for consistent query answering (CQA) in [1] isbased on a first-order
query rewriting of the original query. The new query is posedto the original database,
and the usual answers are the consistent answers to the original query. This algorithm
has limitations wrt the class of ICs and queries it can handle. CQA based on first-order
query rewriting was later extended [17, 22, 27], but it is still limited in its applicability
(cf. Section 6), which is explained by the intrinsic data complexity of CQA (cf. [6, 7]
for surveys in this direction).

In several papers [2, 25, 3, 4, 20, 9, 10], database repairs have been specified as
the stable models of disjunctive logic programs with stablemodel semantics [23] (aka.
answer set programs). It turns out that the data complexity of query evaluation from
disjunctive logic programs with stable model semantics [19] matches the data complex-
ity of CQA. In this line, the approach in [10] is the most general and also the more
realistic, in the sense that it takes into consideration possible occurrences of null values
and the way they are used in real database practice, and thesenull values are also used
to restore consistency wrt referential ICs.

In ConsExwe implement, use and optimize the repair logic programs introduced in
[10]. In consequence,ConsExcan be used for CQA wrt arbitrary universal ICs, acyclic



sets of referential ICs, and NOT-NULL constraints. The queries supported are Data-
log queries with negation, which goes beyond first-order queries. Consistent answers
to queries can be computed by evaluating queries against therepair programs, e.g. us-
ing theDLV system, that implements the stable model semantics of disjunctive logic
programs [28].

The ConsExsystem implements the most general methodology for CQA wrt the
class of ICs and queries that can be handled. To achieve this goal,ConsExcomputes and
optimizes the logic programs that specify database repairsor represent queries. These
programs are internally passed as inputs toDLV, which evaluates them. All this is done
in interaction with IBM DB2 relational DBMS.ConsEx can be applied to relational
databases containing NULL, and all the first-order ICs and (non-aggregate) queries
used in database practice and beyond.

Using logic programs for CQA in a straightforward manner maynot be the most
efficient alternative. As shown in [12], a more efficient way to go is to apply the so-
calledmagic sets(MS) techniques, that transform the combination of the query program
and the repair program into a new program that, essentially,contains a subset of the
original rules in the repair program, those that are relevant to evaluate the query.

Classically, MS optimizes the bottom-up processing of queries in deductive (Dat-
alog) databases by simulating a top-down, query-directed evaluation [5, 15]. More re-
cently, the MS techniques have been extended to logic programs with stable models
semantics [21, 24, 18, 26]. In [12] it was shown how to adopt and adapt those tech-
niques to our repair programs, resulting in a sound and complete MS methodology for
the repair programs with program constraints. In Section 3,we briefly describe this
particular MS methodology, which is the one implemented in the ConsEx system. In
Section 5, we show that the use of MS in the evaluation of queries improves consider-
ably the execution time of queries.

In this paper we describe both the methodologies implemented in ConsEx (more
details about them can be found in [12]), and the features, functionalities, and perfor-
mance of this system (again, more details and proofs of results can be found in [13]).

2 Preliminaries

We consider a relational database schemaΣ = (U ,R,B), whereU is the possibly in-
finite database domain withnull ∈ U ,R is a fixed set of database predicates, each of
them with a finite, and ordered set of attributes, andB is a fixed set of built-in pred-
icates, like comparison predicates, e.g.{<, >, =, 6=}. There is a predicateIsNull(·),
andIsNull(c) is true iff c is null . Instances for a schemaΣ are finite collectionsD
of ground atoms of the formR(c1, ..., cn), calleddatabase tuples, whereR ∈ R, and
(c1, ..., cn) is a tupleof constants, i.e. elements ofU . The extensions for built-in pred-
icates are fixed, and possibly infinite in every database instance. There is also a fixed
setIC of integrity constraints, that are sentences in the first-order languageL(Σ) de-
termined byΣ. They are expected to be satisfied by any instance forΣ, but they may
not.

A universal integrity constraintis a sentence inL(Σ) that is logically equivalent to a
sentence of the form [10]:∀x̄(

∧m
i=1

Pi(x̄i) →
∨n

j=1
Qj(ȳj)∨ϕ), wherePi, Qj ∈ R,

x̄ =
⋃m

i=1
x̄i, ȳj ⊆ x̄, andm ≥ 1. Hereϕ is a formula containing only disjunctions

of built-in atoms fromB whose variables appear in the antecedent of the implication.

2



We will assume that there exists a propositional atomfalse ∈ B that is always false in
the database. Domain constants different fromnull may appear in a UIC. Areferential
integrity constraint(RIC) is a sentence of the form:1 ∀x̄(P (x̄) → ∃z̄ Q(ȳ, z̄)), where
ȳ ⊆ x̄ andP, Q ∈ R. A NOT NULL-constraint (NNC) is a denial constraint of the
form: ∀̄x̄(P (x̄) ∧ IsNull(xi)→ false), wherexi ∈ x̄ is in the position of the attribute
that cannot take null values.

Notice that our RICs contain at most one database atom in the consequent. E.g.
tuple-generating joins in the consequent are excluded, andthis is due to the fact that
RICs will be repaired using null values (for the existentialvariables), whose partici-
pation in joins is problematic. It would be easy to adapt our methodology in order to
include that kind of joins as long as they are repaired using other values in the domain.
However, this latter alternative opens the ground for undecidability of CQA [11], which
is avoided in [10] by using null values to restore consistency.

Based on the repair semantics and the logic programs introduced in [10], CQA
as implemented inConsEx works for RIC-acyclicsets of universal, referential, and
NNCs. In this case, there is a one-to-one correspondence between the stable models
of the repair program and the database repairs [10]. That a set of ICs is RIC-acyclic
essentially means that there are no cycles involving RICs (cf. [12, 10] for details). For
example,IC = {∀x(S(x) → Q(x)), ∀x(Q(x) → S(x)), ∀x(Q(x) → ∃yT (x, y))} is
RIC-acyclic, whereasIC ′ = IC ∪ {∀xy(T (x, y) → Q(y))} is not, because there is a
cycle involving the RIC∀x(Q(x)→ ∃yT (x, y)). In the following, we will assume that
IC is a fixed, finite and RIC-acyclic set of UICs, RICs and NNCs. A database instance
D is said to beconsistentif it satisfiesIC . Otherwise, it isinconsistentwrt IC .

In particular, RICs are repaired by tuple deletions or tupleinsertion with null values.
Notice that introducing null values to restore consistencymakes it necessary to modify
the repair semantics introduced in [1], which does not consider RICs or null values.
This is needed in order to give priority to null values over arbitrary domain constants
when restoring consistency wrt RICs. It becomes necessary to modify accordingly the
notion of minimality associated to repair as shown in the following example (cf. [10]
for details).
Example 1.The database instanceD = {P (a,null), P (b, c), R(a, b)} is inconsistent
wrt IC : ∀ xy (P (x, y) → ∃zR(x, z)). There are two repairs:D1 = {P (a,null),
P (b, c), R(a, b), R(b,null)}, with ∆(D, D1) = {R(b,null)}, andD2 = {P (a,null),
R(a, b)}, with ∆(D, D2) = {P (b, c)}. For everyd ∈ U r {null}, the instanceD3 =
{P (a,null), P (b, c), R(a, b), R(b, d)} is not a repair, because it is not minimal. 2

Database repairs can be specified as stable models of disjunctive logic programs. The
repair programs introduced in [10] build on the repair programs first introduced in [3]
for universal ICs. They use annotation constants to indicate the atoms that may become
true or false in the repairs in order to satisfy the ICs. Each atom of the formP (ā) (except
for those that refer to the extensional database) receives one of the annotation constants.
In P (ā, ta), the annotationta means that the atom is advised to made true (i.e. inserted
into the database). Similarly,fa indicates that the atom should be made false (deleted).2

1 For simplification purposes, we assume that the existentialvariables appear in the last attributes
of Q, but they may appear anywhere else inQ.

2 In order to distinguish a predicateP that may receive annotations in an extra argument from
the same predicate in the extensional database, that does not contain annotations, the former is
replaced byP .

3



For each IC, a disjunctive rule is constructed in such a way that the body of the rule
captures the violation condition for the IC; and the head describes the alternatives for
restoring consistency, by deleting or inserting the participating tuples (cf. rules 2. and
3. in Example 2).

Annotationt⋆ indicates that the atom is true or becomes true in the program. It is
introduced in order to keep repairing the database if there are interacting ICs; and e.g.
the insertion of a tuple may generate a new IC violation. Finally, atoms with constant
t
⋆⋆ are those that become true in the repairs. They are use to readoff the database atoms

in the repairs. All this is illustrated in the following example (cf. [10] for the general
form of the repair programs).

Example 2.Consider the database schemaΣ = {S (ID ,NAME ), R(ID ,NAME ),
T (ID ,DEPTO), W (ID ,DEPTO ,SINCE)}, the instanceD = {S(a, c), S(b, c),
R(b, c), T (a,null), W (null , b, c)}, andIC = {∀xy(S(x, y)→R(x, y)), ∀xy(T (x, y)
→ ∃zW (x, y, z)), ∀xyz(W (x, y, z)∧IsNull(x)→ false)}. The repair programΠ(D ,
IC ) contains the following rules:
1. S(a, c). S(b, c). R(b, c). T (a,null). W (null , b, c).

2. S(x, y, fa) ∨R(x, y, ta)← S(x, y, t⋆), R(x, y, fa), x 6= null , y 6= null .

S(x, y, fa) ∨R(x, y, ta)← S(x, y, t⋆), not R(x, y), x 6= null , y 6= null .

3. T (x, y, fa) ∨W (x, y, null, ta)← T (x, y, t⋆), not aux(x, y), x 6= null , y 6= null .

aux(x, y)←W (x, y, z, t⋆), not W (x, y, z, fa), x 6= null , y 6= null , z 6= null .

4. W (x, y, z, fa)← W (x, y, z, t⋆), x = null .
5. S(x, y, t⋆)← S(x, y).

S(x, y, t⋆)← S(x, y, ta).
6. S(x, y, t⋆⋆)← S(x, y, t⋆), not S(x, y, fa).

9

>

=

>

;

(Similarly for R, T andW )

7. ←W (x, y, z, ta), W (x, y, z, fa).

The rules in 2. establish how to repair the database wrt the first IC: by makingS(x, y)
false orR(x, y) true. Conditions of the formx 6= null in the bodies are used to capture
occurrences of null values in relevant attributes [10]. Therules in 3. specify the form
of restoring consistency wrt the RIC: by deletingT (x, y) or insertingW (x, y, null).
Here, only the variables in the antecedent of the RIC cannot take null values. Rule 4. in-
dicates how to restore consistency wrt the NNC: by eliminatingW (x, y, z). Finally, the
program constraint7. filters out possiblenon-coherentstable models of the program,
those that have anW -atom annotated with bothta and fa.3 Relevant program con-
straints can be efficiently generated by using adependency graph[12], which captures
the relationship between predicates in the ICs (cf. Section4).

The program has two stable models:4 M1 = {S(a, c, t⋆), S(b, c, t⋆), R(b, c, t⋆), T (a,

null , t⋆), W (null , b, c, t⋆), W (null , b, c, fa), R(a, c, ta), S(a, c, t⋆⋆), S(b, c, t⋆⋆), R(b, c, t⋆⋆),

R(a, c, t⋆), R(a, c, t⋆⋆), T (a,null , t⋆⋆)}, M2 = {S(a, c, t⋆), S(b, c, t⋆), R(b, c, t⋆), T (a,

null , t⋆), W (null , b, c, t⋆), W (null , b, c, fa), S(a, c, fa), S(b, c, t⋆⋆), R(b, c, t⋆⋆), T (a,null ,

t
⋆⋆)}. Thus, consistency is recovered, according toM1 by inserting atomR(a, c)

and deleting atomW (null , b, c); or, according toM2 by deleting atoms{S(a, c),
W (null , b, c)}. Two repairs can be obtained by concentrating on the underlined atoms

3 For the program in this example, given the logical relationship between the ICs, this phe-
nomenon could happen only for predicateW , as analyzed in [12].

4 In this paper, stable models are displayed without program facts.

4



in the stable models:{S(a, c), S(b, c), R(b, c), R(a, c), T (a,null)} and{S(b, c), R(b,
c), T (a,null)}, as expected. 2

As established in [4, 10], repair programs are a correct specification of database repairs
wrt RIC-acyclicsets of UICs, RICs, and NNCs.

To compute consistent answers to a queryQ, the query is expressed (or simply
given) as a logic program, e.g. as non-recursive Datalog program with weak negation
and built-ins ifQ is first-order [29]. In this program the positive literals ofthe form
P (s̄), with P an extensional predicate, are replaced byP (s̄, t⋆⋆), and negative literals
of the form not P (s̄) by not P (s̄, t⋆⋆). We obtain a query programΠ(Q), that is
“run” together with the repair programΠ(D , IC ). In this way, CQA becomes a form
of cautiousor skepticalreasoning under the stable models semantics. Notice that for a
fixed set of ICs, the same repair program can be used with everyinstance (compatible
with the schema) and with every query we want to answer consistently, so it can be
generated once, andConsExwill store it.

For the repair program in Example 2, the Datalog queryQ : Ans(x) ← S(b, x),
becomes the programΠ(Q) consisting of the ruleAns(x) ← S(b, x, t⋆⋆). The com-
bined programΠ(D , IC ,Q) := Π(D , IC ) ∪ Π(Q) has two stable models, both of
them containing the atomAns(c). Therefore, the consistent answer toQ is (c).

3 Magic Sets for Repair Programs

The magic set (MS) techniques for logic programs with stablemodel semantics take as
an input a logic program -a repair program in our case- and a query expressed as a logic
program that has to be evaluated against the repair program.The output is a new logic
program, themagic program, with its own stable models, that can be used to answer
the original query more efficiently. As shown in [12], the stable models of the magic
program are relevant in the sense that they contain extensions for the predicates that
are relevant to compute the query. Also, they are only partially computed, i.e. each of
them can be extended to a stable model of the original program(ignoring the “magic”
predicates introduced in the magic program). This happens because the magic program
contains special auxiliary rules, the magic rules, that guide the course of query eval-
uation, avoiding unnecessary instantiation of rules and, as a consequence, achieving a
faster computation of stable models. In this way, we may obtain less and smaller sta-
ble models. The stable models of the magic program are expected to provide the same
answers to the original query as the models of the program used as input to MS.

The magic sets techniques for logic programs with stable model semantics intro-
duced in [21], for the non-disjunctive case but possibly unstratified negation, and in
[24] (improved in [18]), with disjunction but stratified negation, are sound and com-
plete, i.e. they compute all and only correct answers for thequery. In [26] a sound
but incomplete methodology is presented for disjunctive programs with program con-
straints of the form← C(x̄), whereC(x̄) is a conjunction of literals (i.e. positive or
negated atoms). The effect of these programs constraints isto discard models of the rest
of the program that make true the existential closure ofC(x̄).

Our repair programs are disjunctive, contain non-stratified negation, and have pro-
gram constraints; the latter with only positive intensional literals in their bodies. In
consequence, none of the MS techniques mentioned above could be directly applied
to optimize our repair programs. However, as shown in [12] (cf. also [13] for details),

5



the following sound and complete MS methodology can be applied to repair programs
(with program constraints): First, the program constraints are removed from the repair
program. Next, a combination of the MS techniques in [18, 21]is applied to the re-
sulting program. The disjunction is handled as in [18], and negation as in [21]. This
combination works for repair programs because in them, roughly speaking, negation
does not occur in odd cycles. For this kind of programs, soundness and completeness
of MS can be obtained from results in [18, 21].5 Finally, the program constraints are
put back into themagic programobtained in the previous step, enforcing the magic
program to have only coherent models.

The MS techniques currently implemented inDLV cannot be applied to disjunctive
programs with program constraints. On the other side, when the program does not con-
tain program constraints,DLV applies MS internally, without giving access to the magic
program. As a consequence, the application of MS withDLV to repair programs (with
program constraints) is not straightforward.ConsEx, that usesDLV for evaluation of
logic programs, solves this problems as follows: First,ConsEx produces a magic pro-
gram for the combination of the query and repair programs (asbriefly mentioned above)
without considering the program constraints. Next, the original program constraints are
added to the magic program. Finally, this expanded magic program is given toDLV for
evaluation, as any other logic program. This is the MS methodology implemented in
theConsExsystem, which is correct for repair programs. An example below shows this
process in detail.

The MS technique sequentially performs three well defined steps:adornment, gen-
eration and modification, which will be illustrated using Example 2 with the query
programAns(x)← S(b, x, t⋆⋆).

Theadornmentstep produces a new,adornedprogram, in which each intensional
(defined) predicateP takes the formPA, whereA is a string of lettersb, f , for bound
andfree, resp., whose length is equal to the arity ofP . Starting from the query, adorn-
ments are created and propagated. FirstΠ(Q) : Ans(x) ← S (b, x, t⋆⋆) becomes:
Ansf (x)← S bfb(b, x, t⋆⋆), meaning that the first and third arguments ofS are bound,
and the second is a free variable. Annotation constants are always bound.

The adorned predicateS bfb is used to propagate bindings (adornments) onto the
rules defining predicateS, i.e. rules in 2., 5., and 6. As an illustration, the rules in
5. becomeS bfb(x, y, t⋆) ← S(x, y) andS bfb(x, y, t⋆) ← S bfb(x, y, ta), resp. Ex-
tensional (base) predicates, e.g.S appearing asS(x, y) in the first adorned rule, only
bind variables and do not receive any annotation. Moreover,the adorned predicateS bfb

propagates adornments over the disjunctive rules in 2. The adornments are propagated
over the literals in the body of the rule, and to the head literal R (x, y, ta). Therefore,
this rule becomes:6 S bfb(x, y, fa) ∨ Rbfb(x, y, ta), ← S bfb(x, y, t⋆), Rbfb(x, y, fa).
Now, the new adorned predicateRbfb also has to be processed, producing adornments
on rules defining predicateR. The output of this step is anadorned programthat con-
tains only adorned rules.

5 Personal communication from Wolfgang Faber. Actually, this combination is the MS tech-
nique implemented inDLV. Correctness is guaranteed for disjunctive programs with unstrati-
fied negation appearing in even cycles, which is what we need.

6 For simplification purposes, conditions of the formx 6= null are omitted from the disjunctive
rules.

6



The iterative process of passing bindings is calledsideways information passing
strategies(SIPS) [5]. There may be different SIPS strategies, but any SIP strategy
has to ensure that all of the body and head atoms are processed. We follow the strat-
egy adopted in [18], which is implemented inDLV. According to it, only extensional
predicates bind new variables, i.e. variables that do not carry a binding already. As
an illustration, suppose we have the adorned predicateP fbf and the ruleP (x, y, z) ∨
T (x, y) ← R(z), M(x, z), whereR is a extensional predicate. The adorned rule is
P fbf (x, y, z) ∨ T fb(x, y)← R(z), Mfb(x, z). Notice that variablez is free according
to the adorned predicateP fbf . However, the extensional atomR(z) binds this vari-
able, and propagates this binding toM(x, z), wherez becomesbound , producing the
adorned predicateMfb.

The next step is thegeneration of magic rules; those that will direct the computa-
tion of the stable models of the rewritten program obtained in the previous step. For
each adorned atomPA in the body of an adorned non-disjunctive rule, a magic rule
is generated as follows: (a) The head of the magic rule becomes the magic version of
PA, i.e.magic PA, from which all the variables labelled withf in A are deleted. (b)
The literals in the body of the magic rule become the magic version of the adorned rule
head, followed by the literals (if any) that produced bindings on atomPA. For example,
for the adorned literalS bfb(x, y, ta) in the body of the adorned ruleS bfb(x, y, t⋆)←
S bfb(x, y, ta), the magic rule is magic S bfb(x, ta) ← magic S bfb(x, t⋆). For dis-
junctive adorned rules, first, intermediate non-disjunctive rules are generated by mov-
ing, one at a time, head atoms into the bodies of rules. Next, magic rules are gener-
ated as described for non-disjunctive rules. For example, for the rule S bfb(x, y, fa) ∨
Rbfb(x, y, ta)← S bfb(x, y, t⋆), Rbfb(x, y, fa), we have two non-disjunctive rules: (a)
S bfb(x, y, fa)← Rbfb(x, y, ta), S bfb(x, y, t⋆), Rbfb(x, y, fa); and (b)Rbfb(x, y, ta)
← S bfb(x, y, fa), S bfb(x, y, t⋆), Rbfb(x, y, fa). There are three magic rules for rule
(a): magic Rbfb(x, ta) ← magic S bfb(x, fa); magic S bfb(x, t⋆) ← magic S bfb(x,
fa); andmagic Rbfb(x, fa)← magic S bfb(x, fa).

At this step also themagic seed atomis generated. This corresponds to the magic
version of theAns predicate from the adorned query rule, e.g. for ruleAnsf (x) ←
S bfb(x, y, t⋆⋆), the magic seed atom ismagic Ansf .

The last phase is themodification step, where magic atoms constructed in the gen-
eration stage are included in the body of adorned rules. Thus, for each adorned rule, the
magic version of its head is inserted into the body. For instance, the magic versions of
the head atoms in ruleS bfb(x, y, fa)∨Rbfb(x, y, ta)← S bfb(x, y, t⋆), Rbfb(x, y, fa),
aremagic S bfb(x, fa) andmagic Rbfb(x, ta), resp., which are inserted into the body
of the adorned rule, generating the modified ruleS bfb(x, y, fa) ∨Rbfb(x, y, ta) ←
magic S bfb(x, fa), magic Rbfb(x, ta), S bfb(x, y, t⋆), Rbfb(x, y, fa). From the modi-
fied rules the rest of the adornments are now deleted. Thus, the previous modified rule
becomesS(x, y, fa)∨R(x, y, ta)←magic S bfb(x, fa), magic Rbfb(x, ta), S(x, y, t⋆),
R(x, y, fa).

The final, rewritten, magic program consists of the magic andmodified rules, the
magic seed atom, and the facts of the original program. In our case, it also contains the
set of original program constraints that were not touched during the application of MS.
Since in the MS program only magic atoms have adornments, theprogram constraints
can be added as they come to the program. The programMS(Π) below is the magic

7



program for the programΠ consisting of the query programAns(x) ← S(b, x, t⋆⋆)
plus the repair program in Example 2.
Program MS(Π): magic Ansf.

magic S bfb(b, t⋆⋆)← magic Ansf.

magic S bfb(x, ta)← magic S bfb(x, t⋆).
magic S bfb(x, t⋆)← magic S bfb(x, t⋆⋆).
magic S bfb(x, fa)← magic S bfb(x, t⋆⋆).
magic Rbfb(x, ta)← magic S bfb(x, fa).
magic S bfb(x, t⋆)← magic S bfb(x, fa).
magic Rbfb(x, fa)← magic S bfb(x, fa).

magic S bfb(x, fa)← magic Rbfb(x, ta).
magic S bfb(x, t⋆)← magic Rbfb(x, ta).
magic Rbfb(x, fa)← magic Rbfb(x, ta).
magic Rbfb(x, ta)← magic Rbfb(x, t⋆).
magic Rbfb(x, t⋆)← magic Rbfb(x, t⋆⋆).
magic Rbfb(x, fa)← magic Rbfb(x, t⋆⋆).
Ans(x)← magic Ansf , S (b, x, t⋆⋆).

S (x, y, fa) ∨R (x, y, ta)← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t⋆), R (x, y, fa).

S (x, y, fa)∨R (x, y, ta)← magic S bfb(x, fa),magic Rbfb(x, ta), S (x, y, t⋆), not R(x, y).

S (x, y, t⋆)← magic S bfb(x, t⋆), S (x, y, ta). S (x, y, t⋆)← magic S bfb(x, t⋆), S(x, y).

R(x, y, t⋆) ← magic Rbfb(x, t⋆), R(x, y, ta). R(x, y, t⋆) ← magic Rbfb(x, t⋆), R(x, y).

S (x, y, t⋆⋆)← magic S bfb(x, t⋆⋆), S (x, y, t⋆), not S (x, y, fa).

R(x, y, t⋆⋆)← magic Rbfb(x, t⋆⋆), R(x, y, t⋆), not R(x, y, fa).

←W (x, y, z, ta), W (x, y, z, fa).

Notice thatMS(Π) contains rules related to predicatesS, R, but no rules for pred-
icatesT, W , which are not relevant to the query. Therefore the program constraint will
be trivially satisfied. ProgramMS(Π) (with the same facts of the original repair pro-
gram) has only one stable model:M = {S(b, c, t⋆), S(b, c, t⋆⋆), Ans(c)} (displayed
here without the magic atoms), which indicates through itsAns predicate that(c) is the
consistent answer to the original query, as expected. We cansee that the magic program
has only those models that are relevant to compute the query answers. Furthermore,
these are partially computed, i.e. they can be extended to stable models of the program
Π(D , IC ,Q). More precisely, except for the magic atoms, modelM is contained in
every model of the original repair programΠ(D , IC ,Q) (cf. Section 2).7

4 System Description

In Figure 1, that describes the general architecture ofConsEx, theDatabase Connection
module receives the database parameters (database name, user and password) and con-
nects to the database instance. We show in Figure 2 (a) the connection screen; and in
Figure 2 (b), the main menu, obtained after connecting to thedatabase.

TheQuery Processingmodule receives the query and ICs; and coordinates the tasks
needed to compute consistent answers. First, it checks queries for syntactic correctness.
Currently in ConsEx, first-order queries can be written as logic programs in (rather
standard)DLV notation, or as queries in SQL. The former correspond to non-recursive
Datalog queries with weak negation and built-ins, which includes first-order queries.
SQL queries may have disjunction (i.e.UNION), built-in literals in theWHERE clause,
but neither negation nor recursion, i.e. unions of conjunctive queries with built-ins.

After a query passes the syntax check, the query program is generated. ForDLV
queries, the query program is obtained by inserting the annotationt

⋆⋆ into the literals
in the bodies of the rules of the query that do not have a definition in the query program
(but are defined in the repair program). For SQL queries, the query program is obtained

7 In [13] it has been shown that the magic program, and the original repair program arequery
equivalentunder both brave and cautious reasoning.

8



 Relevant
Predicates

Identification

 Dependency
Graph

Construction

MS
Rewriting

 Database
Connection

Answers
Collection

DLVDB

Query
Processing

RIC-acyclic
Checking

Consistency
Checking

ConsEx System

Consistent
Answers

ICs

Query

Options

Repair Program
Construction

Connection

Fig. 1. ConsExArchitecture

(a) (b)

Fig. 2. ConsEx: Database Connection and Main Menu

by first translating queries into equivalent Datalog programs, and then by adding the
annotationt⋆⋆ to the program rules as for theDLV queries.

Given a query, there might be ICs that are not related to the query. More precisely,
their satisfaction or not by the given instance (and the corresponding portion of the
repairs in the second case) does not influence the (standard or consistent) answers to
the query. In order to capture the relevant ICs, theRelevant Predicates Identification
module analyzes the interaction between the predicates in the query and those in the ICs
by means of adependency graph[12], which is generated by theDependency Graph
Constructionmodule. We can use our running example to describe this feature and other
system’s components.

The dependency graphG(IC ) for the ICs in Example 2 contains as nodes the predi-
catesS, R, T, W , and the edges(S, R), (T, W ). Then, for the queryAns(x)← S(b, x)
the relevant predicates areS andR, because they are in the same component as the
predicateS that appears in the query. Thus, the relevant IC to check is∀xy(S(x, y)→
R(x, y)), which contains the relevant predicates (cf. [12] for more details).

Next,ConsExchecks if the database is consistent wrt the ICs that are relevant to the
query. This check is performed by theConsistency Checkingmodule, which generates

9



an SQL query for each relevant IC, to check its satisfaction.For example, for the rele-
vant IC∀xy(S(x, y)→ R(x, y)) identified before,ConsEx generates the SQL query:
SELECT * FROM S WHERE (NOT EXISTS (SELECT * FROM R WHERE R.ID =
S.ID AND R.NAME = S.NAME) AND ID IS NOT NULL AND NAME IS NOT NULL),
asking for violating tuples.

If the answer is empty,ConsExproceeds to evaluate the given query directly on the
original database instance, i.e. without computing repairs. For example, if the query is
Q : Ans(x) ← S(b, x), the SQL query“SELECT NAME FROM S WHERE ID=’b’” ,
is generated byConsExand posed toD. However, in Example 2 we do have{(a, c)}
as the non-empty set of violations of the relevant IC. In consequence, the database is
inconsistent, and, in order to consistently answer the query Q, the repair program has
to be generated.

TheRIC-acyclic Checkingmodule uses the dependency graph to check if set of ICs
is RIC-acyclic. If it is, the generation of programs is avoided, and a warning message
is sent to the user. Otherwise, theRepair Program Constructionmodule generates the
repair program, which is constructed “on the fly”, that is, all the annotations that appear
in it are generated by the system, and the database is not affected. The facts of the
program are not imported from the database intoConsEx. Instead, suitable sentences to
import data are included into the repair program, as facilitated and understood byDLV.

The repair program may contain, for each extensional predicateP , the import sen-
tence#import(dbName, dbUser , dbPass , “SELECT * FROM P”,P), retrieving the
tuples from relationP that will become the facts for predicateP in the program. As a
result, when the program is evaluated byDLV, the database facts will be imported di-
rectly into the reasoning system. These data import sentences are required at this stage
only if ConsEx will run the original repair program without any magic sets optimiza-
tion, which is an option given by the system.

The MS Rewritingmodule generates the magic version of a program. It includes
at the end appropriate database import sentences, which aregenerated by a static in-
spection of the magic program. This requires identifying first, in the rule bodies, the
extensional database atoms (they have no annotation constants). Next, for each of these
extensional atoms, it is checked if the magic atoms will havethe effect of bound-
ing their variables during the program evaluation. That is,it is checked if the con-
stants appearing in the query will be pushed down to the program before query evalua-
tion. For example, in the magic programMS(Π) for the queryAns(x) ← S(b, x)
shown in Section 3, the following rules contain database atoms: (a)S (x, y, t⋆) ←
magic S bfb(x, t⋆), S(x, y); and (b)R (x, y, t⋆) ← magic Rbfb(x, t⋆), R(x, y). In
(a), the variablex in the extensional atomS(x, y) will be bound during the evaluation
due to the magic atommagic S bfb(x, t⋆) appearing in the same body. This magic atom
is defined in the magic program by the rulemagic S bfb(x, t⋆)← magic S bfb(x, t⋆⋆),
where atommagic S bfb(x, t⋆⋆) is defined in its turn by the rulemagic S bfb(b, t⋆⋆)←
magic Ansf . Sincemagic Ans f is always true in an MS program,magic S bfb(b, t⋆⋆)
will be true with the variablex in S(x, y) eventually taking valueb. As a consequence,
the SQL query in the import sentence for predicateS will be: “SELECT * FROM S
WHERE ID = ‘b′” . A similar static analysis can be done for rule (b), generating an
import sentence for relationR. The generated import sentences will retrieve intoDLV
only the corresponding subsets of the relations in the database.

10



The resulting magic program is evaluated inDLV, that is automatically called by
ConsEx, and the query answers are returned to theAnswer Collectionmodule, which
formats the answers and returns them to the user as the consistent answers.

5 Experimental Evaluation

Several experiments on computation of consistent answers to queries were run with
ConsEx. In particular, it was possible to quantify the gain in execution time when using
magic sets instead of the direct evaluation of the repair programs. The experiments were
run on an Intel Pentium 4 PC, processor of 3.00 Ghz, 512 MB of RAM, and with Linux
distribution UBUNTU 6.0. The database instance was stored in the IBM DB2 Universal
Database Server Edition, version 8.2 for Linux. All the programs were run in the version
of DLV for Linux released on Jan 12, 2006.

We considered a database schema with eight relations, and a set of ICs composed
of two primary key constraints, and three RICs. In order to analyze scalability of CQA
trough logic programs, we considered two databases instancesD1, andD2, with 3200
and 6400 stored tuples, resp. The numberN of inconsistent tuples, i.e. participating in
an IC violation varied between20 and400.8

Here, we report the execution time for two conjunctive queries, in both instances.
The first query is of the form,Ans(x̄)← P (ȳ),R(z̄), with x̄ ⊆ ȳ∪z̄, with free variables
(an open query), joins (̄y ∩ z̄ 6= ∅), and no constants. The second query contains joins
and is also partially-ground, like the query used in Section3. Both queries fall in the
class ofTree-queries for which CQA is tractable under key constraints [22]. However,
since we are also considering RICs, which are repaired by inserting tuples with null
values, it is not possible to use the polynomial time algorithm for CQA presented in
[22]. Even more, it is not clear that the tractability resultin [22] carries over to the
queries and ICs used in our experiments.

In the charts,R&Q indicates the straightforward evaluation of the repair program
combined with the query program, whereas its magic sets optimization is indicated with
MS. Figure 3 shows the running time for the first query in the two instances. We can see
that MS is faster than the straightforward evaluation. ForN = 200 (in both database
instances), the MS methodology returns answers in less thanten seconds, while the
straightforward evaluation returns answers after one minute. Moreover, the execution
time of the MS methodology is almost invariant wrt percentage of inconsistency. De-
spite the absence of constants in the query, MS still offers asubstantial improvement
because the magic program essentially keeps only the rules and relations that are rele-
vant to the query, which reduces the ground instantiation ofthe program byDLV.

Figure 4 shows the execution time for the second, partially-ground query in both
database instances. Again, MS computes answers much fasterthan the straightforward
evaluation. In this case, MS has an even better performance due to the occurrence of
constants in the query, which the magic rules push down to thedatabase relations. This
causes less tuples to be imported intoDLV, and the ground instantiation of the magic
program is reduced (wrt the original program).

Furthermore, MS shows an excellent scalability. For instance, MS computes an-
swers to queries from database instancesD1 andD2 in less than ten seconds, even with
a databaseD2 that contains twice as many tuples asD1.

8 The files containing the database schema, ICs, the queries, and the instances used in the exper-
iments are available in http://www.face.ubiobio.cl/∼mcaniupa/ConsEx

11



Database Instance D1 Database Instance D2

Fig. 3. Running Time for the Conjunctive Query with Free Variables

Database Instance D1 Database Instance D2

Fig. 4. Running Time for the Partially-Ground Conjunctive Query with Free Variables

6 Conclusions

We have seen that theConsEx system computes database repairs and consistent an-
swers to first-order queries (and beyond) by evaluation of logic programs with stable
model semantics that specify both the repairs and the query.In order to make query
answering more efficient in practice,ConsEx implements sound and complete magic
set techniques for disjunctive repair programs with program constraints [12]. Moreover,
ConsEx takes advantage of the smooth interaction between the logicprogramming en-
vironment and the database management systems (DBMS), as enabled byDLV. In this
way, it is possible to exploit capabilities of the DBMS, suchas storing and indexing.
Furthermore, bringing the whole database intoDLV, to compute repairs and consis-
tent answers, is quite inefficient. In our case, it is possible to keep the instance in the
database, while only the relevant data is imported into the logic programming system.

The methodology for CQA based on repair logic programs is general enough to
cover all the queries and ICs found in database practice (andmore). On the other side,
we know that CQA has a high intrinsic data complexity [16, 7].The excellent perfor-
mance exhibited by the magic sets techniques makes us think that CQA is viable and
can be used in practical cases. Most likely real databases donot contain such a high
percentage of inconsistent data as those used in our experiments.

Implementations of other systems for CQA have been reportedbefore. TheQueca
system [14] implements the query rewriting methodology presented in [1], and can be
used with universal ICs with at most two database atoms (plusbuilt-ins) and projection-

12



free conjunctive queries. The systemHippo [17] implements first-order query rewriting
based on graph-theoretic methods. It works for denial constraints and inclusion depen-
dencies under a tuple deletion repair semantics, and projection-free conjunctive queries.
The systemConQuer[22] implements CQA for key constraints and a non-trivial class
of conjunctive queries with projections. Comparisons in terms of performance between
ConsEx and these more specialized and optimized systems, for the specific classes of
ICs and queries they can handle, still have to be made.

In ConsEx, consistency checking of databases with SQL null values andrepairs that
appeal to SQL null values both follow the precise and generalsemantics introduced in
[10]. However, when queries are answered inConsEx, the query answer semantics is
the usual logic programming semantics that treats nulls as any other constant. A seman-
tics for query answering in the presence of SQL nulls that is compatible with the IC
satisfaction and repair semantics used inConsEx is proposed in [8]. Its implementa-
tion in ConsEx is left for future work. We also leave for future work the extension of
CQA to broader classes of queries, in particular, to aggregate queries by means of logic
programs as done in [13].

Acknowledgements: Research supported by an NSERC Discovery Grant, and the
University of Bio-Bio (UBB-Chile) (Grant DIUBB 076215 4/R). L. Bertossi is Faculty
Fellow of IBM Center for Advanced Studies (Toronto Lab.). Weare grateful to Claudio
Gutiérrez and Pedro Campos, both from UBB, for their help with the implementation of
algorithms and the interface ofConsEx. Conversations with Wolfgang Faber and Nicola
Leone are very much appreciated.

References

[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent Query Answers in Inconsistent
Databases. InProc. ACM Symposium on Principles of Database Systems (PODS99), ACM
Press, 1999, pp. 68–79.

[2] Arenas, M., Bertossi, L. and Chomicki, L. Answer Sets forConsistent Query Answering
in Inconsistent Databases.Theory and Practice of Logic Programming, 2003, 3(4-5): 393–
424.

[3] Barcelo, P. and Bertossi, L. Logic Programs for QueryingInconsistent Databases. InProc.
5th International Symposium on Practical Aspects of Declarative Languages (PADL 03),
Springer LNCS 2562, 2003, pp. 208–222.

[4] Barcelo, P., Bertossi, L. and Bravo, L. Characterizing and Computing Semantically Cor-
rect Answers from Databases with Annotated Logic and AnswerSets. InSemantics of
Databases, Springer LNCS 2582, 2003, pp. 1-27.

[5] Bancilhon, F., Maier, D., Sagiv, Y. and Ullman, J. Magic Sets and Other Strange Ways to
Implement Logic Programs (extended abstract). InProc. 5th ACM Symposium on Princi-
ples of Database Systems (PODS 86), ACM Press, 1986, pp. 1–15.

[6] Bertossi, L. and Chomicki, J. Query Answering in Inconsistent Databases. InLogics for
Emerging Applications of Databases. Springer, 2003, pp. 43-83.

[7] Bertossi, L. Consistent Query Answering in Databases.ACM Sigmod Record, June 2006,
35(2):68-76.

[8] Bravo, L. Handling Inconsistency in Databases and Data Integration Sys-
tems. PhD. Thesis, Carleton University, Department of Computer Science, 2007,
http://homepages.inf.ed.ac.uk/lbravo/Publications.htm

[9] Bravo, L. and Bertossi, L. Consistent Query Answering under Inclusion Dependencies. In
14th Annual IBM Centers for Advanced Studies Conference (CASCON 2004), 2004, pp.
202–216.

13



[10] Bravo, L. and Bertossi, L. Semantically Correct Query Answers in the Presence of Null
Values. InCurrent Trends in Database Technology - EDBT 2006, Springer LNCS 4254,
2006, pp. 33-47.

[11] Cali, A., Lembo, D. and Rosati, R. On the Decidability and Complexity of Query Answer-
ing over Inconsistent and Incomplete Databases. InProc. ACM Symposium on Principles
of Database Systems (PODS 03), ACM Press, 2003, pp. 260–271.

[12] Caniupan, M. and Bertossi, L. Optimizing Repair Programs for Consistent Query An-
swering. InProc. International Conference of the Chilean Computer Science Society
(SCCC 05), IEEE Computer Society Press, 2005, pp. 3–12.

[13] Caniupan, M. Optimizing and Implementing Repair Programs for Consistent Query An-
swering in Databases. PhD. Thesis, Carleton University, Department of Computer Science,
2007, http://www.face.ubiobio.cl/∼mcaniupa/publications.htm

[14] Celle, A. and Bertossi, L. Querying Inconsistent Databases: Algorithms and Implementa-
tion. In Computational Logic - CL 2000, Springer LNCS 1861, 2000, pp. 942-956.

[15] Ceri, S., Gottlob, G. and Tanca, L.Logic Programming and Databases. Springer-Verlag,
1990.

[16] Chomicki, J. and Marcinkowski, J. On the ComputationalComplexity of Minimal-Change
Integrity Maintenance in Relational Databases. InIntegrity Tolerance, Springer LNCS
3300, 2004, pp. 119-150.

[17] Chomicki, J., Marcinkowski, J. and Staworko, S. Computing Consistent Query Answers
using Conflict Hypergraphs. InProc. 13th ACM International Conference on Information
and Knowledge Management (CIKM 04), ACM Press, 2004, pp. 417–426.

[18] Cumbo, C., Faber, W., Greco, G. and Leone, N. Enhancing the Magic-Set Method for Dis-
junctive Datalog Programs. InProc. 20th International Conference on Logic Programming
(ICLP 04), Springer LNCS 3132, 2004, pp. 371–385.

[19] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. Complexity and Expressive Power of
Logic Programming.ACM Computing Surveys, 2001, 33(3):374-425.

[20] Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient Evaluation of Logic Programs
for Querying Data Integration Systems. InProc. 19th International Conference on Logic
Programming (ICLP 03), Springer LNCS 2916, 2003, pp. 163–177.

[21] Faber, W., Greco, G. and Leone, N. Magic Sets and their Application to Data Integration.
Journal of Computer and System Sciences, 2007, 73(4):584–609.

[22] Fuxman, A., Fazli, E. and Miller, R.J. ConQuer: Efficient Management of Inconsistent
Databases.Proc. ACM International Conference on Management of Data (SIGMOD 05),
ACM Press, 2005, pp. 155-166.

[23] Gelfond, M. and Lifschitz, V. Classical Negation in Logic Programs and Disjunctive
Databases.New Generation Computing, 1991, 9:365–385.

[24] Greco, S. Binding Propagation Techniques for the Optimization of Bound Disjunctive
Queries. InIEEE Transac. on Knowledge and Data Eng., 2003, 15(2):368–385.

[25] Greco, G., Greco, S. and Zumpano, E. A Logical Frameworkfor Querying and Re-
pairing Inconsistent Databases.IEEE Transactions on Knowledge and Data Eng., 2003,
15(6):1389–1408.

[26] Greco, G., Greco, S., Trubtsyna, I. and Zumpano, E. Optimization of Bound Disjunctive
Queries with Constraints.Theory and Practice of Logic Programming, 2005, 5(6):713–745.

[27] Lembo, D., Rosati, R. and Ruzzi, M. On the First-Order Reducibility of Unions of Con-
junctive Queries over Inconsistent Databases. InCurrent Trends in Database Technology -
EDBT 2006, Springer LNCS 4254, 2006, pp. 358-374.

[28] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello, F. The DLV
System for Knowledge Representation and Reasoning.ACM Transactions on Computa-
tional Logic, 2006, 7(3):499–562.

[29] Lloyd, J.W. Foundations of Logic Programming. Second ed., Springer-Verlag, 1987.

14


