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Abstract—Compact data structures are data struc-
tures that allow compacting data without losing the
ability of querying them in their compact form. We
present algorithms to extend the functionality of the
compact data structure CMHD (Compact represen-
tation of Multidimensional data on Hierarchical Do-
mains), which allows the computation of aggregate
queries with SUM function onmultidimensional matrices.
We implement the rest of aggregate functions, i.e., func-
tions MIN, MAX, COUNT and AVG. We use the CMHD over
Data Warehouses (DWs), that are collection of data
organized to support the decision-making process. The
improvement of efficiency of query processing in DWs is
a very important issue. Therefore, various efforts have
been made in that direction, such as materialization of
views, use of indexes, among others. We show through
experimentation over DWs with synthetic data, that by
using a compact representation of DWs, we can achieve
better performance in processing aggregate queries.

Index Terms—Data Warehouses, Compact Data
Structures, Databases, CMHD

I. Introduction
A Data Warehouse (DW) is a collection of data ori-

ented to a subject, integrated, non-volatile and historical,
organized to support the decision-making process [1], [2].
The DWs are organized according to dimensions and facts.
A dimension defines the perspective from which data are
viewed, and they are modeled as hierarchies of elements
(called members), where each element belongs to a level
(or category) in a hierarchy (a lattice of levels, called a
hierarchy schema). The facts correspond to quantitative
data (also known as measures) associated with the dimen-
sions. Facts can be aggregated (an operation called rollup),
filtered, and referenced using the dimensions, a process
called OLAP (On-line Analytical Processing). A data cube
is a multidimensional structure to capture and analyze the
facts according to dimensions. In other words, a data cube
generalizes the two dimensional way of representing data
by using multiple dimensions. Example 1 illustrates these
concepts.
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Fig. 1: Store and Time Dimensions in a DW

Example 1. Consider a Data Warehouse with the dimen-
sions Store and Time with the hierarchy schemas shown in
Figure 1(a) and Figure 1(c), respectively. Dimension Store
has levels Store, City, Country and All. The latter category is
the top category that is reached by every category in the
hierarchy. Level Store rollup to City which rollup to Country,
that reaches category All. Figure 1(b) shows the elements
and rollups for dimension Store. Elements of level Store are
S1, S2, . . . , S8. Category City has elements: Leb (Lebu),
Ari (Arica), Men (Mendoza) and Sal (Salta). Elements of
category Country are: Chi (Chile) and Arg (Argentina). The
unique element in the All category is all. As an illustration,
element S1 is related with Leb in category City, which rollup
to Chi in category Country that reaches all in level All.

Dimension Time has categories Date, Month, Year, and All.
Category Date rollup to Month that reaches Year, which
in turns rollup to All (for simplicity, we do not present
elements in dimension Time with date format, however in
the experimentation we use the corresponding data type).
Elements in the Date category are: D1, D2, . . . , D8. Level
Month has elements: M1, . . . , M4. Finally, elements in level
Year are Y1 and Y2. For instance, element D1 reaches Month
M1 that rollup to A1 in level Country. �978-1-5386-9233-2/18/$31.00 ©2018 IEEE



S1 S2 S3 S4 S5 S6 S7 S8
D1 0 1 1 0 1 0 2 2
D2 1 2 1 2 1 0 1 0
D3 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 1 0 0
D5 0 0 0 0 0 3 0 0
D6 0 0 0 0 1 0 0 0
D7 0 0 0 0 1 0 0 0
D8 1 1 0 0 0 0 1 2

(a) Data cube grouped by Date and Store

Leb Ari Men Sal
M1 6 4 0 5
M2 0 0 4 0
M3 0 2 0 0
M4 2 0 0 3

(b) Data cube grouped by City and Month

Fig. 2: Data cubes for DW in Figure 1

Figure 2(a) shows a two-dimensional data cube storing
quantities of sales grouped by Date and Store. This is a base
data cube, because it involves inferior levels of hierarchies.
From base data cubes we are able to compute any other
cube by using aggregate queries together with the rollup
relations of dimensions. These queries are queries that use
aggregate functions such as MAX, MIN, COUNT, SUM, and
AVG (average) over numerical data performing grouping
of attributes. For instance, an aggregate query for the
dimensions in Example 1 and the cube in Figure 2 could
be “obtain the amount of sales grouped by City and Month”.
To compute this query we need to know the rollup relation
between levels Store and City in dimension Store, which
contains the pairs {(S1, Leb), (S2, Leb), (S3, Leb), (S4, Ari),
(S5, Ari), (S6, Men),(S7, Sal), (S8, Sal)}, and the rollup
between levels Date and Month in dimension Time, that
contains the pairs {(D1, M1), (D2, M1), (D3, M2), (D4, M2),
(D5, M2), (D6, M3), (D7, M3), (D8, M4)}. Figure 2(b) shows
the data cube with the result of this query.

A. Related Work
Since DW are historical data repositories, they can store

terabytes of data. For this reason, query processing is an
important issue. There are several works that have been
treated the problem of how to speed up query processing in
DWs. The most common approach is to use pre-computed
results to answer queries and to build indexes over these
summary tables [3]–[5]. In particular, a greedy algorithm
for selecting views of the data cube that need to be
materialized is presented in [4]. In the same direction, in
[5] algorithms to automatically select summary tables are
reported, together with a summary-delta-tables method to
keep the summary tables updated efficiently.
A different approach is presented in [6] where the op-

erator shrink is presented. This operator works over data
cubes, fuses slices or views of similar data and replaces
them with a unique representative slice. The new resulting
slice is an approximation of the two processed ones. The

idea behind this is to generate smaller data cubes for
visualization via pivot tables. However, the application of
this operator produces loss of precision in query answering.
Other works that reduce the size of the cube by computing
approximate values are presented in [7], [8].

Other approaches seek the solution by condensing the
data cubes in order to reduce their sizes, such as the
work presented in [9]. The condensed cube corresponds
to a fully pre-computed cube without compression, and
therefore, it can be queried directly by using special
methods. In [10]–[12] algorithms to compute aggregate
queries over compressed data cubes are described. They all
use common compression techniques, such that, deletion
of null values, changing values for pattern values, among
others. In [13] the authors present an algorithm to perform
partitions on the data cube according to the strategy
divide to conquer. They obtain different small cubes to
answer queries quickly in main memory.

A different direction is to analyze the idea of compacting
the DWs using Compact Data Structures (CDEs), which
are data structures that allow to compact different kinds of
data without losing the capability of querying the data in
their compact version. They use small amount of space
but allow for efficient query operations [14]; permit to
process large data sets in main memory avoiding partially
or completely the access to external memory such as disk;
can be located in the upper levels of the memory hierarchy
(closed to the CPU), where the access time have decreased
must faster than the lower levels of the hierarchy. Compact
data structures have been used in different scenarios, such
as: to represent graphs of the World Wide Web [15]–[17], to
represent documents in the context of information retrieval
[18]–[21], to improve query efficiency in GIS (Geographical
Information Systems) [22], [23], among other scenarios.

A first work of using CDEs in the context of DWs was
presented in [24] where authors use the compact data
structure k2-treap to represent and query data cubes and
implement algorithms to compute aggregate queries with
the SUM aggregate function. The compact data structure
k2-treap was initially presented in [25] to compute top-k
queries. The work presented in [24] was later extended to
compute queries over DWs with the rest of the aggregate
functions, i.e., MIN, MAX, COUNT, and AVG [26]. However,
this work is restricted to data cubes with two dimensions.

B. Contributions

In this work we present algorithms to compute aggre-
gate queries, considering all the aggregate functions, over
compact DWs with data cubes with n-dimensions. We
use the compact data structure called CMHD (Compact
representation of Multidimensional data on Hierarchical
Domains) that was recently presented in [27], to com-
pute aggregate queries with SUM function over hierarchical
matrices. Therefore, we extend the functionality of the
CMHD compact data structure.



The rest of the paper is organized as follows: Section
II presents the compact data structure CMHD and the
representation of DWs into compact data structures. Sec-
tion III presents the algorithms to compute aggregate
queries over compact DWs. Section IV shows experimental
evaluation over synthetic data. Finally, Section V presents
the conclusions of the paper and future work.

II. Representing Data Warehouses in CMHD

Section II-A shows how to represent dimensions into
the compact data structure CMHD, and Section II-B
describes how to represent data cubes into trees, bitmaps
and arrays. Then, Section II-C describes how to compute
queries over CMHD. The latter compact data structure is
based on a compact data structure called kn-treap, which
is less efficient. A complete description of the compact data
structure CMHD can be found in [27].

A. Representation of Dimensions

To represent dimensions in the compact data structure
CMHD we need to identify all the elements on them. A
LOUDS (Level-Ordered Unary Degree Sequence) tree [28]
is constructed by considering all the elements of dimen-
sions. A LOUDS tree is a representation of binary trees
that keeps the order of the nodes (levels of dimensions)
by using the degree r of each node [28]. For every LOUDS
tree a bitmap1 is created as follows: for each node that
has children a sequence of the form 1r0 is added into a
bitmap S, where r represents the number of children of
the respective node, each child is represent with a 1. For
instance, if a node has three children, then the sequence
1110 is added to the bitmap S, each 1 is a child, and
the 0 indicates the end of the sequence. This sequence
stores a tree of n nodes using 2n− 1 bits. We present the
construction of the compact representation of a data cube
by using the ongoing example.

Example 2. Consider dimension Store in Figure 1(a) and
Figure 1(b). The LOUDS tree for elements of dimension
Store is shown in Figure 3, which is constructed as follows:
first a root node is added into the tree, then the children
of the root correspond to the two elements in level Country,
i.e., Chi and Arg. Thus the following entry is added into the
bitmap S = [110]. Then, the construction continues with
the second level of the hierarchy from left to right. The
children of element Chi are the cities that rollup to Chi,
i.e., Leb and Ari, and the children of element Arg are the
cities that rollup to this element, i.e., Men and Sal, thus
the bitmap is updated with six entries S = [110 110110].
Finally, we reach the inferior level of stores, and the com-
plete ordered bitmap is S = [110 110110 1110 110 10 110].
The LOUDS representation for the Time dimension can be
constructed in the same way. �

1A bitmap is an arrays that stores bits, i.e., 1s and 0s.
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Fig. 3: LOUDS representation for elements in dimension
Store of DW in Figure 1

B. Representation of Data Cubes
Data cubes, i.e., the numerical data are represented in

trees and arrays. To do it we need to divide the data cube
according to the dimension’s hierarchies. We illustrate the
process considering the data cube in Figure 4 that corre-
sponds to the data cube in Figure 2(a) together with the
dimensions elements of both dimensions Store and Time,
ordered by their corresponding dimension’s hierarchies
according to Figure 1. It is important to mention that, the
tree that is obtained is related with the aggregate function
on the query.

Chi Arg
Leb Ari Men Sal

S1 S2 S3 S4 S5 S6 S7 S8

Y1 M1
D1 0 1 1 0 1 0 2 2
D2 1 2 1 2 1 0 1 0

M2

D3 0 0 0 0 0 0 0 0
D4 0 0 0 0 0 1 0 0
D5 0 0 0 0 0 3 0 0

Y2 M3
D6 0 0 0 0 1 0 0 0
D7 0 0 0 0 1 0 0 0

M4 D8 1 1 0 0 0 0 1 2

Fig. 4: First division of the data cube of Figure 2(a) with
dimensions of the DW in Figure 1

Example 3. The tree for the data cube in Figure 4 for an
aggregate query with SUM function is obtained as follows:
First, the root of the tree stores the total sum of the data in
the cube, which in this case, corresponds to 26. Then, the
data cube is divided according the dimensions hierarchy
starting for the levels below the All category, i.e., grouping
by Year in dimension Time and Country in dimension Store,
which produces for quadrants (marked with a black line),
each quadrant from left to right and from top to bottom,
is a child of the tree and the sum of each quadrant is
stored in each node. This process is done recursively, for
every partition according to the elements in the dimensions
following the dimension’s hierarchies, until the cells are
reached. �

Together with the conceptual tree, two bitmaps Ta

and Tc, and an array V need to be created. Ta stores
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Fig. 5: Tree representation for the data cube in Figure 4

information regarding to all the levels of the tree excepting
the last one, a 1 in Ta indicates that the respective node
has a value different from 0. For a current node n, Tc stores
a 1 if the visited node is not the final child of node n,
otherwise stores a 0. The array V stores the corresponding
aggregate values for the tree. Consider the tree in Figure
5, the process starts as follows: First, the value in the root
of the tree is stored in array V = [26], and the children of
the root are visited. The first child has the value 10, thus
the array is updated to V = [26−10], the bitmap Ta = [1],
since the first child of the root has a value greater than
zero, and Tc = [1], since this node is not the last child
of the root. The process continues until all the tree is
visited. At the end the array V has the following elements
V = [26− 10 9 4 3− 6 4 0 0− 0 5 4 0− 0 2 2 0− 0 0 0 3−
0 1 1 1 2 1−0 1 2 1−2 2 1 0−0 1 3−0 1 0 1−1 1 0−1 2],
Ta = [1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 0 1] and
Tc = [1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 0].

To navigate for the tree we use the bitmaps and the
rank and select operations over them. Let B[1, n] be a
sequence of bits or bitmap, the operation rank1(B, i)
returns the number of occurrences of 1s (or 0s) in B[1, i].
The operation select1(B, j) returns the position of the j-th
occurrence of 1 (or 0) in B. Each node in Ta is associated
with a value 0 in Tc, since this 0 indicates that the final
child of the node in Ta has been reached. Consider we are
a node in Ta that starts at position i (Ta, Tc an V start
at position 0), then, it has a k-th child, if and only if,
Ta[i + k− 1] = 1, and if this is true, then, this child starts
at position select0(Tc, rank1(Ta, i + k − 1)) + 1.

C. Computing Queries over CMHD
The complete method to compute queries with SUM

operation is presented in [27]. The queries can be divided
into two classes, queries that ask for the aggregation
of elements of dimensions that are located at the same
distance from the top level All, for instance, “obtain the
sum of sales of store S6 and date D5”, both are inferior
levels, in which case, the algorithm needs to recovery the
parents of the nodes (levels) in the query and search for
the value in the corresponding array. A more complicate
case is when the query requires to sum elements of levels
that are at different distance from the top level All, for
instance “obtain the sum of sales of store S1 and year Y1”,
where S1 is located in an inferior level of dimension Store,

and Y1 is located in level Year that is below of level All in
dimension Time. In this case, we need to recovery all the
sales of the year Y1 and sum them to answer the query.
In both cases the tree has to be explored from the root to
the corresponding nodes. We explain the process by using
the ongoing example.
Consider the data cube of Figure 4 and the query

“obtain the sales for store S6 and date D5”, which are
both elements of inferior dimensions levels, and the re-
sult corresponds to a single stored value. According to
dimension Store element S6 rollup to Men in level City
and to Arg in level Country. On the other side, element
D5 rollup to month M2 and year Y1 in dimension Time.
This information is obtained from the LOUDS of both
dimensions (Figure 3 shows the LOUDS for dimension
Store).
Thus, the algorithms needs to know from which children

of the trees has to descent to find the answer. In this
case, for dimension Store represented in the tree in Figure
3 it has to go to node Arg. To perform the search the
algorithm starts at the root of the tree of Figure 5 which
corresponds to position 0 in bitmap Ta, by applying the
function child = k1+ai×k2, where ki is the child that must
be followed in the i-th dimension to obtain the queried
node, and ai is the number of children of the root in the i-
th dimension. This formula is applied repeatedly with the
next node until the queried node at dimension i is reached.
The steps to get the answer are the following:
1) Element Arg is the second child of the root, since the

first child is element Chi at position 0, then k1 = 1.
Now, for dimension Time, Y1 is the first child of cat-
egory Year, thus k2 = 0, finally, a1 is the number of
children of the root of dimension Store, thus a1 = 2.
Then, we need to descend for the level of the tree
k1+a1×k2 = 1+2×0 = 1, i.e., Ta[1] = 1, since there
is a 1 in this position we need to continue descending
in the tree. So, we calculate the position in Ta of
the child of Ta[1] = 1, which starts at position
select0(Tc, rank1(Ta, 1))+1 = select0(Tc, 2)+1 = 8.

2) Now, we need to know from which child to descend.
We are at element Men which is the first child of Arg,
so k1 = 0. For the level Month we are at element M2
which is the second child of Y1, so k2 = 1, since
Arg has two children, a1 = 2, we need to descend
for the level k1 + a1 × k2 = 0 + 2 × 1 = 2, i.e.,



Ta[8 + 2] = Ta[10], since the children of Arg starts at
position 8 and Men is located at position 10 of Ta.
Since Ta[10] = 1 we need to continue descending by
the tree. The children of this node start at position
select0(Tc, rank1(Ta, 10)) + 1 = select0(Tc, 8) + 1 =
33 + 1 = 34.

3) Finally, we need to find the position of element S6
and D5. So, we apply k1 + a1 × k2 = 0 + 1 × 2 =
2, then, S6 is at position Ta[34 + 2] = Ta[36]. This
position does not exists in Ta, because this bitmap
only stores the intermediate levels of the tree. So, we
search directly into the array V [i + 1], where i is 36
and due to the case that V stores the root value, we
need to add a 1, thus the value of the sum is in V [37]
and corresponds to 3.

In the next section we present the extensions to CMHD
to compute the other aggregate functions that are used in
DWs.

III. Algorithms to Compute Aggregate Queries
We extend the compact data structure CMHD by

adding functions to compute new aggregate queries that
are common DWs. The aggregate functions implemented
are: MAX, MIN, COUNT and AVG. All the algorithms are based
in the algorithm presented in [27] to compute queries with
function SUM. For space restrictions, we only shown the
computation of the corresponding aggregate values in the
array Vagg that stores the values of the aggregate functions
at different levels of CMHD trees. Thus, every of the
algorithms are called repeatedly until all the cells of data
cubes are reached, and the corresponding trees are created.
Algorithm 1 computes the aggregate function MAX over

a data cube (or a portion of it), which is a matrix.
The algorithm to compute the aggregate function MIN is
similar to the latter. Algorithm 2 and Algorithm 3 allow,
respectively, the computation of the aggregate function
COUNT and AVG over a matrix representing facts of a DW.

Algorithm 1: Compute the MAX function
Input: M : matrix according to elements of dimensions d1 and

d2
Output: Vmax: max value

1 max← 0;
2 t← GetT otalEntries(M);
3 j ← 0;
4 h← 0;
5 for i = 0; i < t; i + + do
6 if i == 0 then
7 max←M [j, h];
8 else
9 max← MAX(max, M [j, h]);

10 if j ← GetMaxColumn(M) then
11 j + + ;
12 h← 0;

13 h + + ;
14 Vmax ← max;
15 return Vmax;

Algorithm 2: Compute the COUNT function
Input: M : matrix according to elements of dimensions d1 and

d2
Output: Vcount: count value

1 count← 0;
2 t← GetT otalEntries(M);
3 j ← 0;
4 h← 0;
5 for i = 0; i < t; i + + do
6 if M [i]! = 0 then
7 count← count + 1;
8 if j ← GetMaxColumn(M) then
9 j + + ;

10 h← 0;
11 h + + ;
12 Vcoutn ← count;
13 return Vcount;

All the algorithms receive a portion of the data cube
(in the first call they receive the complete data cube)
and return the corresponding aggregate value for the
matrix. Note that, when these algorithms are called the
corresponding tree is created together with the bitmaps
Ta and Tc, and array V .

Algorithm 3: Compute AVG function
Input: M : matrix according to elements of dimensions d1 and

d2
Output: Vavg : avg value

1 sum← 0;
2 avg ← 0;
3 t← GetT otalEntries(M);
4 j ← 0;
5 h← 0;
6 if t! = 0 then
7 for i = 0; i < t; i + + do
8 sum← sum + M [j, h];
9 if j ← GetMaxColumn(M) then

10 j + + ;
11 h← 0;
12 h + + ;
13 if sum! = 0 then
14 avg ← sum

t
;

15 Vavg ← avg;
16 return Vavg ;

IV. Experimentation
We measure our algorithms in terms of space saving and

execution time of queries. We consider a DW with three
dimensions represented in a snowflake schema [2], since it
allows the representation of dimension’s hierarchies, that
was implemented in PostgreSQL2 DBMS. The dimensions
are Store and Time of Figure 1, and Product with levels
Product → Type → Brand → All. We use a computer with
Intel Core processor i3 with 2.0GHz, and 8 GB of RAM
memory. The machine runs Linux System Ubuntu version
16.04. All data structures were implemented in C++ and

2https://www.postgresql.org/



compiled with gcc 6.3. We build different data cubes
(matrices) of different sizes. The values in the matrices
were generated considering discrete uniform distribution
with a range of values between [0, 1000]. We construct data
cubes with three dimensions each, they have 16, 32, 64 and
96 elements in the inferior levels for each dimension.

A. Experimental Results on Space of Main Memory
Table I shows the data cubes generated with uniform

distribution, and the storage space occupied by Post-
greSQL and by the CMHD compact data structure. We
can see that the compact representation of the cubes saves
a considerable amount of space, on average the saving of
space is about 95% with respect to PostgreSQL. Figure 6
shows the corresponding chart.

TABLE I: Size of the data cubes
# Elements in the cubes SGBD (KB) CMHD (KB)

4,096(16×16×16) 7,780 27.8
32,768(32×32×32) 9,790 205.4
262,144(64×64×64) 26,000 1, 500
884,736(96×96×96) 70,000 4,500
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Fig. 6: Comparison of space on data cubes

B. Experimental Results on Execution Time of Queries
Table II shows the execution times of all aggregate

queries with MAX function executed over the generated data
cubes. In every case, the execution times of queries over
the CMHD representation of DWs are much better than
the execution times of queries over PostgreSQL. We mark
with red the worst cases and in blue the best cases. We
can observe than even in the worst cases the differences
are considerable. Figure 7(a) shows the best execution
times for this function, which is obtained when all the
dimension’s levels are at the same distance from the top
level All of the corresponding dimensions. In this case
the query asks for the sum of sales grouped by Country
of dimension Store, Year of dimension Time, and Brand of
dimension Product, which are all below level All in their
respective dimensions. The worst case scenario is when
the levels of the query are inferior levels and, therefore, all
the cells of the respective sub-matrix need to be processed,
this is the case of Figure 7(b).

TABLE II: Execution times in milliseconds for queries
with MAX aggregate function over different data cubes

# Elements in the cubes
4096 32768 262144 884736

Query levels CMHD SGBD CMHD SGBD CMHD SGBD CMHD SGBD
Store - Date - Product 23 141 179 1,300 1,118 12,400 2,261 39,100
Store - Date - Type 7.5 55 39 376 216 3,800 545 8,000
Store - Date - Brand 8.5 43 36 333 184 3,600 503 7,900
Store - Date - All 5.2 12 31 156 105 322 312 965
Store - Month - Product 8.5 66 40 430 199 4,300 543 9,200
Store - Month - Type 4 23 20 188 75 3,100 216 6,700
Store - Month - Brand 6 22 23 174 72 3,100 195 6,400
Store - Month - All 3 13 14 111 79 222 236 730
Store - Year - Product 8.1 34 26 290 140 3,900 395 8,500
Store - Year - Type 4.6 13 14 148 79 3,000 203 6,100
Store - Year - Brand 4.3 12 18 145 78 3,000 200 6,000
Store - Year - All 3.0 12 14 100 84 215 220 704
Store - All - Product 6.5 12 33 177 100 335 295 1,000
Store - All - Type 3.5 12 16 111 68 218 257 732
Store - All - Brand 3.3 13 15 104 74 215 213 725
Store - All - All 2.7 12 14 22 113 133 229 435
City - Date - Product 11 66 48 435 244 2,700 278 9,100
City - Date - Type 4.9 23 17 176 104 1,600 242 5,700
City - Date - Brand 3.9 24 22 170 79 1,500 243 5,500
City - Date - All 3.8 12 16 100 112 225 215 703
City - Month - Product 5.2 34 19.8 210 88.8 1,800 241.8 7,100
City - Month - Type 1.6 13 2.3 121 2.0 1,200 2.5 4,500
City - Month - Brand 2.1 12 1.2 112 2.2 1,100 1.4 4,760
City - Month - All 0.68 13 0.6 75 0.64 895 0.7 3,200
City - Year - Product 4.1 13 16.8 158 84 1,700 273.8 6,500
City - Year - Type 1.2 13 1.2 105 1.4 1,100 1.2 4,10
City - Year - Brand 1.0 12 1.0 115 1.2 1,100 1.1 4,100
City - Year - All 0.27 12 0.28 60 0.41 735 0.3 2,900
City - All - Product 4.69 13 20.80 112 135.80 233 351.80 735
City - All - Type 0.68 12 0.5 68 0.57 784 0.6 3,000
City - All - Brand 0.60 12 0.4 67 0.48 740 0.6 2.900
City - All - All 0.023 11 0.1 22 0.14 135 0.16 470
Country - Date - Product 12.8 34 31 295 164 2,400 427 9,500
Country - Date - Type 5.3 13 17 150 71 1,700 238 6,100
Country - Date - Brand 5.3 13 20 145 76 1,600 209 5,900
Country - Date - All 3.2 13 18 99 87 215 202 718
Country - Month - Product 4.2 13 17.9 177 82.9 2,000 234.9 7,500
Country - Month - Type 0.7 12 1.2 111 1.0 1,400 0.9 4,900
Country - Month - Brand 0.8 12 0.9 112 0.9 1,300 1.0 4,600
Country - Month - All 0.42 12 0.43 67 0.34 1,000 0.4 3,100
Country - Year - Product 4.58 12 15.99 150 76.99 1,900 229.99 6,800
Country - Year - Type 0.68 13 0.69 102 0.59 1,400 0.71 4,500
Country - Year - Brand 0.38 12 0.29 101 0.39 1,300 0.41 4,400
Country - Year - All 0.08 12 0.09 56 0.09 930 0.10 2,500
Country - All - Product 3.59 12 13 112 111 215 301 730
Country - All - Type 0.36 12 0.2 68 0.29 895 0.39 2,900
Country - All - Brand 0.15 13 0.15 56 0.15 899 0.17 2,700
Country - All - All 0.038 11 0.04 22 0.05 142 0.04 440
All - Date - Product 7.8 12 25 191 114 320 320 998
All - Date - Type 4.3 13 18 116 78 222 223 960
All - Date - Brand 4.0 13 17 111 75 215 241 725
All - Date - All 3.3 12 16 22 129 135 226 430
All - Month - Product 3.4 13 17.8 144 80 218 285 755
All - Month - Type 0.41 12 0.4 89 0.6 1,00 0.66 3,200
All - Month - Brand 0.34 12 0.51 79 0.55 1,000 0.58 3,100
All - Month - All 0.31 12 0.31 22 0.31 133 0.30 455
All - Year - Product 3.32 12 18 122 75 222 243 725
All - Year - Type 0.38 12 0.37 68 0.41 963 0.4 2,700
All - Year - Brand 0.14 12 0.080 66 0.16 950 0.17 2,600
All - Year - All 0.05 11 0.050 23 0.05 133 0.051 455
All - All - Product 3.29 12 18 23 113 142 290 430
All - All - Type 0.24 11 0.26 22 0.28 133 0.29 460
All - All - Brand 0.03 11 0.07 22 0.07 126 0.08 455
All - All - All 0.008 11 0.008 12 0.008 44 0.009 123

104 105 106

100

101

102

103

104

Elements in the cube

Ex
ec
ut
io
n
tim

e
(m

s)

CMHD
SGBD

104 105 106

102

103

104

Elements in the cube

Ex
ec
ut
io
n
tim

e
(m

s)

CMHD
SGBD

(a) Aggregate query grouped by Country, Year and Brand (b)Aggregate query grouped by Store, Date and Product

Fig. 7: Best and worst execution times for aggregate
queries with MAX function

For the rest of the aggregate functions the tendency
is the same, with the compact representation we obtain
better execution times, than executing queries over the
SGBD. Figure 8, Figure 9, Figure 10 and Figure 11, show
the best and worst cases of execution times of queries with
aggregate functions MIN, COUNT, AVG, and SUM, respectively.
Note that there are almost no difference between the best



and worst cases to aggregate queries with MAX and MIX
aggregate functions, and between queries with SUM, COUNT
and AVG aggregate functions.
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Fig. 8: Best and worst execution times for aggregate
queries with MIN function
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Fig. 9: Best and worst execution times for aggregate
queries with COUNT function
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Fig. 10: Best and worst execution times for aggregate
queries with AVG function

V. Conclusion
In this paper, we extend the functionality of the CMHD

compact data structure [27], which was initially imple-
mented to compute aggregate queries with SUM function.
We implement the rest of the aggregate functions which
are common used in OLAP. We use the CMHD compact
data structure to represent and query DWs, that includes
the use of bitmaps and arrays. We consider data cubes
with multiple dimensions, and report experiments with
data cubes with three dimensions. The experimentations
we present over synthetic data, show that, by using com-
pact data structures we can save storage space in main
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Fig. 11: Best and worst execution times for aggregate
queries with SUM function

memory, and perform queries more efficiently, than using
a traditional DBMS, such as PostgreSQL. As a future
work we propose to extend the compact data structure
CMHD to support heterogeneous dimensions [29], [30], i.e.,
dimensions with more than one path from the inferior level
to the All level.
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