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Abstract—In this paper we propose the use of the
compact data structure k2-treap to process data cubes
of Data Warehouses (DWs) into main memory. Com-
pact data structures are data structures that allow
compacting the data without losing the capacity of
querying them in their compact form. A DW is a data
repository to store historical data for decision support,
and consists of dimensions and facts. The former are
an abstract concept that groups data with a similar
meaning, they are modelled as hierarchies of levels,
which contain elements. The latter are quantitative
data associated to dimensions. A data cube is a typical
way to retrieve facts at different levels of granularity
(through navigation on dimensions hierarchies). A DW
can store terabytes of data, thus the efficient processing
of data cubes is key in OLAP (On-line Analytical
Processing). We show that by using a compact rep-
resentation of data cubes and bitmaps to represent
dimensions we are able to improve the use of space
in main memory, and achieve better performance for
query processing.

Index Terms—Databases, data warehousing, com-
pact data structures.

I. Introduction
The traditional way of querying large data sets is to

bring the data from the secondary memory (for example
disks) to the main memory, and then process queries. This
can be supporting with the use of indexes to access the
appropriate data from the disk quickly. However, in recent
years the tendency has been to use the main memory
to both storing and querying the data [1]–[3]. By having
the data in main memory we can achieve efficiency in
processing queries due to the high speed of this memory.
For example, the reference to main memory is 100 nanosec-
onds, but read and write operations from disk may take 5
milliseconds [3]. However, the main memory is still more
expensive than the secondary memory, so we need to use
it efficiently. To achieve this objective we can use compact
data structures.

The compact data structures are data structures that
use small amount of space but allow for efficient query
operations [4]. They permit to process large data sets in

978-1-5386-3483-7/17/$31.00 ©2017 IEEE
*Professor at Universidad de Los Lagos, Puerto Montt, Chile

main memory avoiding partially or completely the access
to external memory such as disk; they can be located in the
upper levels of the memory hierarchy (closed to the CPU),
where the access time have decreased must faster than the
lower levels of the hierarchy. Compact data structures have
been used for representing several data sets. For instance
in [5]–[7] they are used to represent graphs of the World
Wide Web. In [8]–[11] they allow the representation of
documents in the context of information retrieval. Also,
they have been used to improve query efficiency in GIS
(Geographical Information Systems) [12], [13].
In this paper we propose to use the compact data

structure k2−treap to compute aggregate queries over data
cubes of data warehouses (DWs). Initially, this compact
data structure was used to compute top-k queries [14],
such as: “obtain the sellers with most sales”.
Data Warehouses integrate data from different sources,

and keep historical data for analysis and decision support
[15]. DWs organize data according to dimensions and facts.
The dimensions reflect the perspectives from which data
are viewed, they are modeled as hierarchies of elements
(also called members), where each element belongs to a
level (or category) in a hierarchy (a lattice of levels, called
a hierarchy schema). The facts correspond to quantitative
data (also known as measures) associated with the dimen-
sions. Facts can be aggregated (an operation called rollup),
filtered (usually through slice and dice operations), and
referenced using the dimensions, a process called OLAP
(On-line Analytical Processing). A data cube is a mul-
tidimensional structure to capture and analyze the facts
according to dimensions. In other words, a data cube
generalizes the two dimensional way of representing data
by using multiple dimensions. Example 1 illustrates these
concepts.

Example 1. Consider a Data Warehouse with the dimen-
sions Store and Product with the hierarchy schemas shown
in Figure 1(a) and Figure 1(c), respectively. Dimension
Store has levels Store, City, Region and All. The latter cate-
gory is the top category that is reached by every category
in the hierarchy. Level Store reaches (or rollup to) City
that rollup to Region, which reaches category All. Figure
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Fig. 1: Store and Product Dimensions in a DW

1(b) shows the elements and rollups for dimension Store.
Elements of level Store are ST1, ST2, . . . , ST8. Category
City has elements: CHI (Chillán), CON (Concepción), CAU
(Cauquenes) and TAL (Talca). Elements of category Region
are: VIII and VII. The unique element in the All category is
all. As an illustration, element ST1 is related with CHI in
category City, which rollup to VIII in category Region that
reaches all in level All.

Dimension Product has categories Product, Type, Brand,
and All. Category Product rollup to Type that reaches
Brand, which in turns rollup to All. Elements in the Product
category are: P1, P2, . . . , P8. Level Type has elements: T1,
. . . , T4. Finally, elements in Brand are B1 and B2. For
instance, element P1 reaches type T1 that rollup to B1 in
category Brand. �

P1 P2 P3 P4 P5 P6 P7 P8
ST1 0 15 7 5 0 0 0 0
ST2 3 9 10 1 0 0 0 0
ST3 0 4 0 8 0 0 0 0
ST4 13 0 0 3 0 0 0 0
ST5 0 0 4 0 0 0 8 0
ST6 0 0 7 12 0 0 0 0
ST7 4 1 0 0 0 0 3 0
ST8 5 6 0 0 0 0 7 10

Fig. 2: The sales cube with dimensions Store and Product

Figure 2 shows a two-dimensional data cube storing
quantities of sales of products by each store. Aggregate
queries use an aggregate function such as MAX, MIN, COUNT,

SUM, and AVG (average) over a numerical data performing
grouping of attributes. For instance, an aggregate query
for the dimensions in Example 1 and the cube in Figure
2 could be “obtain the amount of sales grouped by region
and type of products”. To compute this query we need to
know the rollup relations between levels Store and City and
between City and Region in dimension Store and the rollup
relation between levels Product and Type in dimension
Product.
Data warehouses can store terabytes of data, thus query

processing is a key issue. A common technique to speed
up query processing is using pre-computed results to
answers queries and to build indexes over these summary
tables. There are works that attack the problem of how to
select the summary tables to be materialized, and how to
keep them updated [16]. In [17] authors report a greedy
algorithm for selecting views of the data cube that will
be materialized. In the same direction, in [18] the authors
report algorithms to automatically select summary tables,
together with a summary-delta-tables method to keep the
summary tables updated efficiently.
In a different direction, in [19] the authors propose the

operator shrink that fuses slices (views) of similar data and
replaces them with a unique representative slice. Thus,
the new resulting slice is an approximation of the two
processed ones. The idea behind this is to generate smaller
cubes for visualization via pivot tables. The operator can
be applied over cubes to decrease their sizes but controlling
the loss in precision. However, the application of this
operator produces loss of precision in query answering.



Other works that reduce the size of the cube by computing
approximate values are presented in [20], [21].

In [22] the authors present a way to condense a data
cube in order to reduce the size of the cube. The condensed
cube corresponds to a fully pre-computed cube without
compression, and therefore, it can be queried directly. In
[23]–[25] authors present algorithms to compute aggregate
queries over compressed data cubes, they use common
compression techniques such that deletion of null values,
changing values for pattern values, among others. In [26]
the authors present an algorithm to perform partitions
on the data cube according to the strategy divide to con-
quer. They obtain different small cubes to answer queries
quickly in main memory.

In this paper we present a representation of the data
cubes on the compact data structure k2-treap presented in
[14] to compute top-k queries. We implement algorithms
that use this compact data structure to compute aggregate
queries with aggregate function SUM but it can be easily
extended to compute other aggregate functions such as
MIN, MAX, and AVG. We use bitmaps to represent the
dimensions hierarchies of DWs.

The rest of the paper is organized as follows: Section
II presents preliminaries concepts about the compact data
structure k2-treap. Section III shows the representation of
the dimensions of a DW into bitmaps, the representation of
a data cube in a k2-treap, and the algorithms to compute
aggregate queries over DWs. Section IV shows experi-
mental evaluation over synthetic data. Finally, Section V
presents the conclusions of the paper and some future
work.

II. Preliminaries concepts
In this section we present the compact data structure k2-

treap, the way to navigate it, and the method to compute
top-k queries over it.

A. Compact data structure k2-treap
The compact data structure k2-treap is presented in

[14] and is based in two compact data structures, the
k2-tree [6] and the treap [27]. The k2-treap was created
to represent multidimensional matrices storing numerical
values. Let M [n×n] be a matrix where a cell can contain
a value or be empty. This matrix can be partitioned into
k2 submatrices and then a tree can be obtain as follows:
(i) the root of the tree stores the coordinates of the cell
with the maximum value in the matrix and the value. (ii)
Then, the value is deleting from the matrix. If many cells
share the same value one of them is chosen. (iii) Then, the
matrix is decomposed into k2 equal-size submatrices, and
k2 child nodes are added into the root of the tree, each
of them represents one of the submatrices. This process
is repeated recursively for each child, until the matrix is
empty. The following example illustrates the process.

Example 2. Consider the matrix M0[8 × 8] in Figure
3. The maximum value on the matrix is located in the

coordinate (0, 3) and corresponds to value 8. This coordi-
nate and value will compose the root of the tree. Then,
the value is deleting from M0. After this, M0 is divided
into k2 submatrices. Consider that k = 2, then we get
four submatrices in M1 (see Figure 3). This process is
recursively applied over the submatrices, each quadrant is
a child of the root. For M0 there are other two subdivisions
called M2 and M3, respectively. The empty nodes in the
tree are represented with the symbol “−”. �

The tree is then modified to save memory space. This
is achieved by changing the coordinates by the positions
in the submatrices from left to right (starting every sub-
matrix in position (0, 0)), and the maximum value is
encoded differentially with respect to the maximum value
of its parent node. Figure 4 shows the new tree for the tree
in Figure 3.
Then, the tree structure of the k2-treap is stored into

a k2-tree [6], and the values and coordinates of the tree
are stored into specific arrays. Basically, a k2-tree stores
1s and 0s, a 1 represents the presence of a value, and the 0
represents the opposite. In computational terms, we do not
need to represent the tree structure but a bitmap called
T that stores 1s and 0s. This array can be explored by
using rank and select operations. Let B[1, n] be a sequence
of bits (also called bitmaps). The operation rank1(B, i)
returns the number of occurrences of 1s (or 0s) in B[1, i].
The operation select1(B, j) returns the position of the jth
occurrence of 1 (or 0) in B. Both operations can be solved
in constant time. To find a child in a k2-tree we use the
function childi(x) = rank1(T, x)× k2 + i, where i is the i-
th child of node x in T (where the first position on T is 0).
The others arrays used to represent the k2-treap compact
data structure are arrays to store the coordinates of the
modified tree, an array called values to store the values
of the tree, and an array called first that indicates the
initial position of a new level in array values. Figure 5
shows the representation of the k2-treap in Figure 4.

B. Navigating the tree
Suppose we want to obtain the coordinate C(x, y) in the

k2-treap of Figure 5. The navigation starts by the root of
the k2-tree, that corresponds to the node with coordinates
(x0, y0) and value v = values[0]. If C = (x0, y0), the value
v is returned, otherwise we need to find the quadrant
where the cell would be located in the k2-tree. Let p
be a position of a node in array T (that stores the k2-
tree), if T [p] = 0 the corresponding sub-matrix is empty
and the algorithm returns. Otherwise, we need to find de
coordinates and the value of the node. So, we compute
r = rank1(T, p) which returns the number of occurrences
of 1 in T until position p, the value of the node is
v = values[r] and its coordinates at coord[l][r − first[l]],
where l is the current level in the tree. The value v has to
be reconstructed since in the array values they are stored
differentially with respect to the maximum value of their



Fig. 3: Construction of a k2-treap from a matrix M [8× 8] [14]

Fig. 4: New re-codified tree for the tree in Figure 3

Fig. 5: Representation of the k2-treap for the matrix M0 in Figure 3

parent nodes. Thus, v1 = v − values[r]. Let us assume
that the coordinates at coord[l][r − first[l]] are (x1, y1),
if C = (x1, y1), we return v1, otherwise again, the proper
quadrant where C is located has to be found.

C. Computing top-k queries from a k2-treap
The process to obtain top-k queries over a range of the

matrix Q[x1, x2]× [y1, y2] starts at the root of the tree by
implementing a priority queue that store maximum values.
The first element of this queue is the root value, and then,
iteratively, the process extract the first element of the
queue, if the coordinate of the value fall inside Q, a new
answer is retrieved. All the children of the extracted node,
which coordinates intersect Q are inserted into the queue.

The process continues until the k answers are obtained.
We illustrate this process in the following example.

Example 3. Consider the matrix M0[8× 8] in Figure 3,
and the query “obtain the three top values in the range
[4, 4], [7, 7]”, this is, the four quadrant of M0. The first
element of the priority queue is the root the tree, this is,
coordinate (0, 3) with value 8, since the coordinate of this
node do not fall into the range Q, this value is discarded
as an answer. Then, all the children of the root whose
coordinates intersect the query range are inserted into the
queue, this is the four child in level N1 in Figure 3, with
coordinate (4, 4) and value 7, which corresponds to the
first answer. Then, the non-empty children of this node
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Fig. 6: One column tables for levels of dimensions Store
and Product

are added into the queue, this is, node with coordinate
(6, 6) and value 3, which corresponds to the second answer.
Finally, since, we still need a third answer, the non-empty
children of this node are added into the priority queue, this
is, nodes with coordinates (6, 7), (7, 6) and (7, 7), which are
all leaves of the tree, with values 2, 1 and 0 respectively.
Thus, the third answer corresponds to the value 2, then,
the top-3 answers are {7, 3, 2}. �

III. Representing and processing DWs into
compact data structures

In this section we present how to map dimensions of
DWs into bitmaps and data cubes into k2-treaps. Also, we
present the algorithms to compute the aggregate queries
(with SUM function) over cubes and dimensions using
compact data structures.

A. Representation of dimensions
We use one column tables to store elements of di-

mensions levels and bitmaps to store the rollup relations
between elements of dimensions levels. We store all the
levels of a dimension, except the first level, which is part
of the data cube, and the last level All, which as a unique
element all. We illustrate this in the following example.

Example 4. Consider the dimensions Store and Product
of the DW in Example 1 with hierarchy schemas in Figure
1(a) and 1(c), respectively. The one column tables needed
to store the values in dimensions levels are shown in Figure
6. Note that, we store only the values for levels City and
Region of dimension Store (see Figure 1(b)), and the values
for levels Type and Brand of dimension Product (see Figure
1(d). �

The rollup relations store the association between ele-
ments of two levels of a dimension. Thus, for example, the
rollup relation between levels Store and City in dimension
Store has the pairs: {(ST1, CHI), (ST2, CHI), (ST3, CHI),
(ST4, CON), (ST5, CON), (ST6, CAU), (ST7, TAL), (ST8,
TAL)}. For this case, our idea is to capture in a bitmap
table, to which element of level City is related each element
of level Store.

Let a and b be levels of a dimension D, such that, a
rollup to b, we create a bitmap table that indicates how
many elements of level a belongs to the first element on
level b, and so on. Every 1 in the bitmap indicates the
change of element in level b. We do not consider bitmaps

R1
position Store Bitmap

0 ST1 1
1 ST2 0
2 ST3 0
3 ST4 1
4 ST5 0
5 ST6 1
6 ST7 1
7 ST8 0

R2
position City Bitmap

0 CHI 1
1 CON 0
2 CAU 1
3 TAL 0

(a) Bitmaps for dimension Store
R3

position Product Bitmap
0 P1 1
1 P2 0
2 P3 1
3 P4 0
4 P5 0
5 P6 1
6 P7 0
7 P8 1

R4
position Type Bitmap

0 T1 1
1 T2 1
2 T3 0
3 T4 0

(b) Bitmaps for dimension Product

Fig. 7: Bitmaps to store the rollup relations of dimensions
Store and Product

for the levels that rollup to the top level All, since all of
them have to rollup to the unique element in All which is
all. The following example illustrates the bitmaps tables
for dimensions Store and Product for our ongoing example.

Example 5. Consider the dimensions Store and Product
of the DW in Example 1 with hierarchy schemas in Figure
1(a) and 1(c), respectively. The bitmaps that capture the
rollup relation between levels Store and City, and between
City and Region are shown in Figure 7(a), and the ones
that capture the rollup relations between levels Product
and Type, and between Type and Brand are shown in Figure
7(b). As an illustration, table R1 indicates that stores
ST1, ST2, and ST3 rollup to the first element in level City
(which is CHI). Then, since in the entry for element ST4 the
bitmap changes from 0 to 1, it indicates that ST4 and ST5
rollup to the second element in level City (which is CON).
Then, another change happens in the entry of element
ST6 indicating that ST6 rollup to the third element in City
which is CAU. Finally, in the entry for element ST7 there
is another 1 so elements ST7 and ST8 are related with the
four element in City which is TAL. The same analysis can
be done with the rest of the bitmaps tables. �

B. Representation of data cubes
The data cubes are represented on the compact data

structure k2-treap. We consider only data cubes with two
dimensions as the one shown in Figure 2. Let A and B
be the inferior levels of two dimensions on a cube C,
with n and m elements, respectively. The data cube C



is represented in a matrix of size n × m. Since a data
cube may contain zeros, we do not consider the zeros
when constructing the k2-treap, and in this way we are
able to save extra memory space. Figure 8 shows the
representation of the data cube in Figure 2 without the
zeros.

P1 P2 P3 P4 P5 P6 P7 P8
ST1 15 7 5
ST2 3 9 10 1
ST3 4 8
ST4 13 3
ST5 4 8
ST6 7 12
ST7 4 1 3
ST8 5 6 7 10

Fig. 8: The sales cube of Figure 2 without zeros

The construction of the k2-treap for this matrix can
be done as described in Section II. Thus, Figure 9 shows
the k2-treap for the data cube in Figure 8. According to
the process of construction this tree has to be re-codified
according the coordinates of every sub-matrix and the
maximum values are encoded differentially with respect
to the maximum value of their parents. Figure 10 shows
the re-codified tree for the tree in Figure 9. Finally, the
new tree is stored in a k2-tree and arrays for every level
and values are created. Figure 11 shows the k2-treap for
the data cube in Figure 8.

C. Computing aggregate queries
The most common queries in DWs are queries with

function SUM grouping by different dimensions levels. For
instance, “obtain the total sales grouping by city and type
of products”. Thus, we can use the same algorithm to
compute the top-k queries presented in [14] and that was
illustrated in Section II. But, instead of retrieving the top-
k values, we collect all the values from the query range
(given by the levels on the query) and sum them. To obtain
the levels we need to use the bitmaps described in Section
III-A. The following example illustrates the process of
computing aggregate queries.

Example 6. Consider the data cube in Figure 12 with
level Store in the rows and Product in the columns, together
with the hierarchy schemas in Figure 1. To compute the
aggregate query “obtain the quantity of sales by stores in
city TAL and brand B2”, we need to sum the values in the
range {(6,2), (7,7)} in the cube which is 20. �

To obtain the range of an aggregate query we need to
identify the levels involved in the query, and then, going
down through the corresponding hierarchies to obtain the
inferior levels in the cube. This operation is called drill-
down in DW terminology [15]. In the case of Example 6
we know that TAL is the last element of level City which
is stored in table City in Figure 6. So, we need to know

which are the stores that rollup to TAL. We can obtain
that information by searching for the four 1 in bitmap
R1 in Figure 7 through the operation select1(R1, 4) = 6,
this is, the first store that rollup to TAL is ST7. Since,
TAL is the last element in level City the rest of elements in
bitmap R1 rollup to TAL. Thus, we can conclude that the
range of the query will consider rows 6 until 7 in the cube.
Then, to find the proper columns representing products
that rollup to B2 we search in the bitmap R4 by performing
select1(R4, 2) = 1 (since brand B2 is the second element in
table Brand). Thus, the first type of products that rollup
to brand B2 is T2 and the last type is T4. Now, we need to
know which products rollup to types T2, T3 and T4, and
again, this is obtained by performing select operations over
bitmap R3. Since type T2 is the second element in table
Type we perform select1(R3, 2) = 2, which corresponds to
product P3. To find the last element that rollup to type
T2 we perform select1(R3, 3)−1 = 4 which corresponds to
product P5, the same operations are performed for types
T3 and T4, obtaining that we need to consider columns
from 2 to 7 in the cube, which give us the range {(6,2),
(7,7)} for the aggregate query (see Figure 12). The range
of a query is obtained by Algorithm 2 which is called by
the main Algorithm 1 (Line 3).

Algorithm 1: Computation of aggregate
queries over compact DWs

input : A query Q, a set of bitmaps B, a set of one column
tables T , a k2-treap K

output: Ans(Q)
1 catDim1← GetCategoryDim1(Q);
2 catDim2← GetCategoryDim2(Q);
3 RQ← GetRangeQuery(catDim1, catDim2, B, T);
4 Ans(Q)← ComputeAggregation(RQ, K);
5 return Ans(Q)

Algorithm 1 is the general algorithm to compute ag-
gregate queries over a k2-treap. It receives as an input
the aggregate query Q, the set of bitmaps B, the set of
one column tables T that store the elements in dimension
levels, and the k2-treap K. It first gets the levels for
the aggregations (Lines 1-2). Then, it gets the range of
the query (Line 3), and finally it computes the SUM of
the returned values in the range over the k2-treap (Line
4). It is important to note that the k2-treap compact
data structure is available at the C++ Succinct Data
Structure Library1 with all its functionally, which includes
the implementation of the top-k queries. We use this
function to collect all the values in the range query.
Algorithm 2 gets the range of the query, and to do this

only need the query Q, the set of bitmaps B, and the set
of one column tables T .
Finally, Algorithm 3 uses the function TopK that gets

all the values from a specific range RQ on a k2-treap. This
function is implemented in the library of the k2-treap.

1https://github.com/simongog/sdsl-lite
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Fig. 9: Tree for the data cube in Figure 8
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Fig. 10: Re-codified tree for the in Figure 9
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coord[0] (0,1)

coord[1] (3,0) (1,3) (3,3)
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values 15 - 2 3 5 - 4 3 9 5 5 6 2 3 - 6 3 5 9 5 3 2 5 1 4

T 1011 - 1111 0110 0101 - 0010 1101 0000 0001 1000 1110 0000 1001 first 0 1 4 12

Fig. 11: k2-treap for the data cube in Figure 8

Algorithm 2: Get range query
input : Levels catDim1 and catDim2, a set of bitmaps B, a

set of one column tables T
output: RQ

1 x1 ← GetInitialRow(catDim1, B, T);
2 x2 ← GetFinalRow(catDim1, B, T);
3 y1 ← GetInitialColumn(catDim2, B, T);
4 y2 ← GetFinalColumn(catDim2, B, T);
5 RQ← {(x1, y1), (x2, y2)};
6 return RQ

Thus, when the values are collected, the algorithm sum
them generating the query answer (Line 3).

Algorithm 3: Compute Aggregation
input : range RQ, and a k2-treap K
output: Ans(Q)

1 Ans(Q)← ∅;
2 V alues← TopK(K, RQ);
3 foreach i ∈ V alues do
4 Ans(Q)← Ans(Q) + i.value;
5 return Ans(Q)



Fig. 12: Range for aggregate query in Example 6

IV. Experimental evaluation
In this section we present experimental results of our

algorithms in terms of space saving and execution time
of queries. We consider the DW presented in Example 1
with dimensions in Figure 1 and the data cube of Figure
2. The DW was implemented in PostgreSQL2 DBMS
(Database Management System) version 9.3.12 by using
a snowflake schema [15], since it allows the representation
of dimensions hierarchies. Figure 13 shows the schema for
this DW. We consider different synthetic data sets.

We ran all the experiments on a computer with Intel
Core processor i7 with 2.40GHz, and 12 GB of RAM
memory. The machine runs Debian Linux System version
8.4.0 amd64. All data structures were implemented in
C++ and compiled with gcc 6.3.

We build different data cubes (matrices) of different
sizes. The values in the matrices were generated consider-
ing discrete uniform distribution and normal distribution.

A. Experimental results on space of main memory
Table I shows the data cubes generated with uniform

and normal distributions, we consider data cubes with
different amount of elements. Also, the table shows the
storage space occupied by PostgreSQL and by the k2-treap
compact data structure. Figure 14 shows that the compact
representation of the cube saves a considerable amount of
space, in most of the cases the saving of space is about
80% with respect to PostgreSQL. As we see in Figure 14
with a normal distribution of the data (k2− treap (n)) we
save more space than when using an uniform distribution
(k2 − treap (u)). This is basically due to the amount of
zeros that are generated in the cubes with the normal

2https://www.postgresql.org/

distribution, which are not considering in the compact
representation but are stored in the DBMS. Also, the
values in the cubes generated with the normal distribution
have a high probability of being similar.
B. Experimental results on execution time of queries
Table II and Table III show, respectively, the execution

times of all the queries executed over cubes generated with
uniform (normal) distribution for the DW in Example
1. As we can observe in most of the cases, we obtain
better execution times than executing the queries over
PostgreSQL, excepting some cases. But, when the k2-treap
gains in execution time the differences are considerable.
We illustrate the best execution times over the data

cubes generated with normal distribution, since, in these
cubes there are zeros, which are stored in the DBMS
but ignored in the compact data structure. Figure 15(a)
shows the execution times for aggregate queries grouping
by levels Product and Store, and Figure 15(b) shows the
execution times for aggregate queries grouping by levels
Product and City. Figures 16, 17, 18, and Figure 19(a)
shows the same tendency. However, Figure 19(b) shows
that when executing the aggregate query “give the total
amount of sales´´ (this is grouping by All levels of both
dimensions) PostgreSQL has better execution times on
data cubes with more than 10, 000 elements. This can be
explained by the use of indexes over the primary key and
foreign keys and the optimizations methods implemented
in PostgreSQL.

V. Conclusions and future work
We present the representation of DWs into the compact

data structures k2-treap, one column tables, and bitmaps
relations. We consider only data cubes with two dimen-
sions, but the compact data structure k2-treap can be



Fig. 13: Snowflake schema for the DW in Example 1

TABLE I: Size of the data cubes generated with uniform and normal distribution
Uniform distribution Normal distribution

#Elements #Zeros DBMS
(KB)

k2-treap (KB) #Zeros DBMS
(KB)

k2-treap
(KB)

2,500 0 6,954 9.5 99 6,954 5.37
10,000 0 7,130 36.9 426 7,130 20.31
250,000 0 17,000 910.92 9,563 17,000 499.99

1,000,000 0 49,000 3,637.93 38,348 49,000 1,995.35
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Fig. 14: Save space over cubes generated with normal and uniform distribution

modified to consider more dimensions [28]. The experi-
mentations we present over synthetic data, show that, by
using compact data structures we can save storage space
in main memory and perform queries more efficiently (in
most of the cases), than using a traditional DBMS. In
this paper we only consider aggregate queries with SUM
function, but the work can easily be extended to compute

other aggregate functions. In fact, we believe that with the
MAX function our proposal will run better than a DBMS,
since the k2-treap data structure was designed to get top-k
elements. As a future work we consider to implement the
rest of aggregate functions.

The recent work presented in [28] describe a new com-
pact data structure called CMHD (Compact representa-



TABLE II: Execution times in milliseconds for the data cubes generated with uniform distribution

Query level

# Elements in the cubes
2,500 10,000 250,000 1,000,000

k2-treap DBMS k2-treap DBMS k2-treap DBMS k2-treap DBMS
Product - Store 12 103 14 1,893 17 10,094 20 41,079
Product - City 12 13 20 31 89 306 171 788
Product - Region 9 11 18 92 85 2,750 169 16,636
Product - All 8 12 17 22 85 223 171 646
Type - Store 12 13 18 33 84 395 173 1,160
Type - City 15 12 34 23 722 223 2,950 635
Type - Region 12 13 32 51 709 2,186 2,955 11,755
Type - All 10 13 29 22 721 222 3,112 605
Brand - Store 9 12 15 22 81 354 172 1,624
Brand - City 12 12 29 21 717 233 3,006 635
Brand - Region 9 13 28 41 705 1,451 3,012 7,858
Brand - All 8 12 25 23 724 214 3,159 585
All - Store 7 13 15 23 80 223 174 626
All - City 10 13 29 21 718 212 3,137 576
All - Region 7 12 28 23 708 223 3,119 615
All - All 6 13 26 21 728 182 3,240 474

TABLE III: Execution times in milliseconds for the data cubes generated with normal distribution

Query level

# Elements in the cubes
2,500 10,000 250,000 1,000,000

k2-treap DBMS k2-treap DBMS k2-treap DBMS k2-treap DBMS
Product - Store 11 93 12 359 14 9,162 17 36,688
Product - City 12 13 19 34 86 296 166 787
Product - Region 9 13 17 92 83 2,795 165 12,234
Product - All 7 12 16 23 84 233 171 625
Type - Store 10 12 17 33 79 394 171 1,170
Type - City 14 12 32 23 732 222 3,035 635
Type - Region 11 13 41 51 720 2,164 3,029 12,704
Type - All 10 12 37 22 734 213 3,180 595
Brand - Store 7 13 19 21 78 343 172 1,140
Brand - City 11 12 28 23 733 233 3,086 635
Brand - Region 8 12 27 41 720 3,076 3,098 7,736
Brand - All 7 13 25 22 740 202 3,235 585
All - Store 6 13 14 21 78 223 174 596
All - City 10 11 29 22 732 212 3,193 585
All - Region 7 12 28 22 725 213 3,192 606
All - All 6 12 26 23 753 182 3,316 474
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Fig. 15: Execution times for aggregate queries grouping by levels Product-Store and Product-City

tion of Multidimensional data on Hierarchical Domains)
to compute aggregation queries with aggregate function
SUM. The latter compact data structure is based a com-
pact data structure called kn-treap, that support multiple

dimensions. As a future work we plan to compare our
algorithms with the algorithms over the CMHD compact
data structure considering more dimensions.
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Fig. 16: Execution times for aggregate queries grouping by levels Product-Region and Product-All
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Fig. 17: Execution times for aggregate queries grouping by levels Type-Store and Type-Region
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Fig. 18: Execution times for aggregate queries grouping by levels Brand-Store and Brand-Region
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