
Handling Inconsistencies in Data Warehouses with
Extended Dimensions

Juan Ramírez
Universidad del Bío-Bío

Concepción, Chile
juaramir@ubiobio.cl

Mónica Caniupán
Universidad del Bío-Bío

Concepción, Chile
mcaniupa@ubiobio.cl

Loreto Bravo
Universidad de Concepción

Concepción, Chile
lbravo@udec.cl

Abstract—Dimensions in Data Warehouses (DWs) are modeled
using a hierarchical schema of categories. A dimension should
satisfy a set of constraints to ensure that queries can be answered
efficiently using pre-computed answers. For many reasons a
dimension might become inconsistent and there might be several
ways to fix it. In order to represent this uncertainty, we introduce
the concept of extended dimensions, that is, dimensions where
categories contain sets of elements which allow to represent
ambiguity. In this article we formalize extended dimensions and
a suitable way to answer queries from them.

I. PROBLEM STATEMENT

Data Warehouses (DWs) are data repositories that integrate
data from different sources, and keep historical data for
analysis and decision support. DWs organize data according
to the multidimensional model, in which, dimensions reflect
the perspectives upon which facts are viewed, and the facts
correspond to events which are usually associated to numeric
values known as measures, and are referenced using the
dimension elements. Dimensions are modeled as hierarchies
of elements, where each element belongs to a category. The
categories are also organized into a hierarchy called hierarchy
schema. Figure 1(a) shows a Football Teams dimension with a
bottom category Team, that rolls-up to Zone, and Tournament.
Categories Zone and Tournament go to Confederation which
reaches category All. Figure 1(b) shows the elements for
categories of the dimension DFT, and the rollup relations
between them.

The multidimensional structure allows users to compute
queries at different levels of granularity. For example, in the
dimension in Figure 1 we can compute summaries grouped by
zone or confederation and so on. Efficient query answering in
DWs relies in the use of pre-computed results at lower cat-
egories to compute aggregates at higher levels in dimensions
hierarchies. In order to be able to do this, the dimensions
should satisfy strictness and covering constraints [1]–[3].

For many reasons a dimension might become inconsistent
and the need of repairing it arises so that correct answers can
be computed when using pre-computed answers. Alternatives
to fix inconsistencies have been proposed: (i) finding a new
dimension, called a minimal repair, which satisfies the con-
straints and that is close to the inconsistent one [3] or (ii) by
constructing a canonical repair which adds extra elements to
categories to take into consideration the ambiguity introduced

All

Confederation

Zone Tournament

Team

all

CONM UEFA AFC

SA WEU AS AC EC ASC

AUSPCH

(a) Dimension hierarchy (b) Dimension DFT

Fig. 1. Football Teams Dimension

by the possible ways to fix the violations of the constraints [4].
In order to represent this uncertainty in repairs, we introduce
the concept of extended dimension, that is, a dimension where
categories contain sets of elements. In this way, a rollup rela-
tion between sets s1 and s0 implies that all rollup combinations
between elements in s0 and s1 can possibly be valid. This
ambiguity allows the representation of the unknown ways in
which the inconsistent dimension can be fixed and allows to
provide ranges of answers between the aggregate values that
are known to be part of the answer and values that might be
part of it. Thus, the answers from an extended dimension will
not be exact, but a range within which the answer is known
to belong. In [4], no formalization is given for this type of
dimension nor for its query answering semantics. In the next
section we formalize extended dimensions and how to query
them.

II. EXTENDED DIMENSION

An extended dimension X is a tuple (HX , EX ,
CElemX ,�X ), where HX = (CHX ,↗HX ) is a hierarchy
schema; EX is a set of constants, called elements; CElemX :
CHX → P(P(EX ))is a function that, given a category re-
turns a set of subsets of elements in EX ; and the relation
�X⊆ P(EX ) × P(EX ) that corresponds to the child/parent
relation between elements of different categories. We denote
with �∗X the reflexive and transitive closure of �X . The
following conditions hold: (i) allX is the only element in
category AllHX . (ii) For all ci, cj ∈ CHX , if ci 6= cj then
CElemX (ci) ∩ CElemX (cj) = ∅. (iii) For all pair of elements
a ∈ CElemX (ci) and b ∈ CElemX (cj) if a �X b then
ci ↗HX cj . (iv) For each ci ∈ CHX it holds that: (a)
∅ 6∈ CElemX (ci). (b) If e ∈ CElemX (ci) then for each element



All
Confederation

Zone Tournament

Team

all

c1 c2 c3 c4 {c1,c2} {c2,c3} {c1,c2,c3}

z1 z2 z3 z4 {z2,z3} {z1,z3} o1 o2 o3 o4 {o2,o3} {o1,o2}

t1 t2 t3 t4 t5 t6

Fig. 2. Extended Dimension XFT

e′ ∈ e it holds that {e′} ∈ CElemX (ci). (v) for the bottom cat-
egory cb ∈ CHX it holds that for every e ∈ CElemX (cb), e is a
singleton. Condition (iii) ensures that the child/parent relation
(�X ) only connects elements of categories that are connected
in the schema. Condition (iv) ensures that every element that
is a set in a category contains only elements of this category.
Condition (v) enforces that elements in the bottom category
are only singleton elements, and in this way, we will be able
to join with the data in the fact tables. In order to simplify pre-
sentation we will sometimes replace a singleton element {e}
by e. Given an extended dimension (HX , EX ,CElemX ,�X )
with hierarchy schema HX = (CHX ,↗HX ). For each pair
of categories ci, cj ∈ CHX such that ci ↗∗HX

cj , there is a
rollup relation, denoted by RX (ci, cj), that has the set of pairs
{(a, b)|a ∈ CElemX (ci), b ∈ CElemX (cj) and a�∗X b}.

A possible extended dimension XFT for the hierarchy
schema in Figure 1(a) is shown in Figure 2. Note that some
of the elements in Zone, Tournament and Confederation are
sets. The extended dimension can be treated as a traditional
dimension T (X ) where all sets belonging to a category are
considered as simple elements. For example, dimension T (X )
for the extended dimension XFT in Figure 2, is a dimension
where categories Team, Zone and Tournament contain six
distinct elements and category Confederation contains seven
distinct elements. However, note that this results in loosing
the information about the connection between elements. For
example, it would interpret that there is no connection between
elements o1 and {o1, o2}. Thus, we could think that when
posing a query over T (X ) we could use techniques currently
implemented in DWs systems. However, as we will show,
query answering needs to be redefined for extended dimen-
sions to take full advantage of the flexibility given by them.

Consider a Sales fact table (which is not shown here
because of space restrictions) associated to dimensions football
team (XFT) and time (XTIME). The table below shows the
results obtained from posing aggregate queries QSUM and QCOUNT

that compute, respectively, the SUM and COUNT of incomes
grouped by category Confederation of dimension T (XFT), and
category Year of dimension T (XTIME).

Conf. Year QSUM QCOUNT

t1 c1 2010 700 1
t2 {c1, c2} 2010 200 1
t3 {c2, c3} 2010 200 1
t4 c3 {2010,2011} 600 1
t5 c4 2010 500 1

As it can be seen, the results obtained by treating the extended
dimension as a normal dimension do not capture the fact that
different elements might contribute to the same aggregation.
For example, tuple t2 in the table might contribute to the
answer in tuple t1 since c1 is contained in element {c1, c2}.

Thus, we need a query answering semantics specially de-
signed for extended dimensions that takes into consideration
the relationship between elements within a category. We
first define set A(t,Q, {X1, . . . ,Xi, . . . ,Xn}, F ) that contains
all the tuples that might contribute to an answer t. For
example, Given a query Q, an extended dimension X =
(HX , EX ,CElemX ,�X ), a fact table F , and a tuple t =
〈e1, . . . , en〉 with ei ∈ EX for every i ∈ [1, n], the set of tuples
associated to t in Q({T (X1), . . . , T (Xi), . . . , T (Xn)}, F ),
denoted by A(t,Q, {X1, . . . ,Xi, . . . ,Xn}, F ), is {a|a =
〈s1, . . . , sn, v〉, a ∈ Q(T (X1), . . . , T (Xi), . . . , T (Xn), F ),
ei ∈ si for i ∈ [1, n]}. We use the set of associated tuples
to answers a query Q with aggregate functions SUM or
COUNT over a set of extended dimension S and a fact table
F .

If we go back to our ongoing example with queries QSUM and
QCOUNT we see that we need to consider the interaction between
the elements in the given table to provide their answers. For
tuple t = 〈c1, 2010〉 set A(t, QSUM, {XFT, XTIME},Sales)
contains tuples t1 and t2, thus the final answer for SUM is
〈c1, 2010, [700, 900]〉, where 900 is the sum of the aggregate
values for tuples in set A(t,QSUM, {XFT, XTIME},Sales). For
tuple t = 〈c2, 2010〉 set A contains tuples t2 and t3, since
there is no answer to t in the table, the final answer for SUM is
〈c2, 2010, [0, 400]〉 where value 400 is the sum of the aggregate
values for tuples in A. For tuple t = 〈c3, 2010〉 set A contains
tuples t3 and t4, again there is no answer to t, then the final
answer is 〈c3, 2010, [0, 800]〉 where value 800 is the sum of
the aggregate values for tuples in A. For tuple t = 〈c3, 2011〉
set A contains tuple t4, since again there is no answer to t,
the final answer is 〈c3, 2011, [0, 600]〉. Finally, for the tuple
t = 〈c4, 2010〉 set A has the unique tuple t5, then, the final
answer is 〈c4, 2010, [500, 500]〉. An analogous analysis can be
done for the aggregate function COUNT.

Even though the notion of extended dimension we propose
is motivated for cleaning inconsistent dimensions, extended
dimensions can be used to express dimensions that are in
nature imprecise, or have a certain level of uncertainty and
ambiguity on the rollup relations among its elements.

REFERENCES

[1] H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and Statistical
Data Bases,” in SSDBM’97, 1997, pp. 132–143.

[2] C. Hurtado, C. Gutierrez, and A. Mendelzon, “Capturing Summarizability
with Integrity Constraints in OLAP,” ACM Transactions on Database
Systems, vol. 30, no. 3, pp. 854–886, 2005.

[3] M. Caniupán, L. Bravo, and C. A. Hurtado, “Repairing inconsistent
dimensions in data warehouses,” Data Knowl. Eng., vol. 79-80, pp. 17–
39, 2012.

[4] L. Bertossi, L. Bravo, and M. Caniupán, “Consistent Query Answering
in Data Warehouses,” in AMW’09, vol. 450, 2009.


