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ABSTRACT
A dimension in a data warehouse (DW) is an abstract concept that
groups data that share a common semantic meaning. The dimen-
sions are modeled using a hierarchical schema of categories. A
dimension is called strict if every element of each category has ex-
actly one ancestor in each parent category, and covering if each
element of a category has an ancestor in each parent category. If a
dimension is strict and covering we can use pre-computed results
at lower levels to answer queries at higher levels. This capability
of computing summaries is vital for efficiency purposes. Never-
theless, when dimensions are not strict/covering it is important to
know their strictness and covering constraints to keep the capabil-
ity of obtaining correct summarizations. Real world dimensions
might fail to satisfy these constraints, and, in these cases, it is im-
portant to find ways to fix the dimensions (correct them) or find
ways to get correct answers to queries posed on inconsistent di-
mensions. A minimal repair is a new dimension that satisfies the
strictness and covering constraints, and that is obtained from the
original dimension through a minimum number of changes. The
set of minimal repairs can be used as a tool to compute answers
to aggregate queries in the presence of inconsistencies. However,
computing all of them is NP-hard. In this paper, instead of trying
to find all possible minimal repairs, we define a single compatible
repair that is consistent with respect to both strictness and covering
constraints, is close to the inconsistent dimension, can be computed
efficiently and can be used to compute approximate answers to ag-
gregate queries. In order to define the compatible repair we defined
the notion of extended dimension that supports sets of elements in
categories.

Categories and Subject Descriptors
H.2 [Database Management]: Database Administration—Data
warehouse and repository
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1. INTRODUCTION
Data Warehouses (DWs) are data repositories that integrate data

from different sources, and keep historical data for analysis and de-
cision support [7]. DWs organize data according to the multidimen-
sional model. In this model, dimensions reflect the perspectives
upon which facts are viewed, and the facts correspond to events
which are usually associated to numeric values known as measures,
and are referenced using the dimension elements. Dimensions are
modeled as hierarchies of elements, where each element belongs
to a category. The categories are also organized into a hierarchy
called hierarchy schema.

Example 1. FIFA1 has a DW to manage information about na-
tional football teams. This DW uses a Time and Football_Team
dimensions. The Time dimension contains categories Date, Month,
Year and All connected as shown in Figure 1(a). The Football_Team
dimension, shown in Figure 1(b), contains in the bottom category
Team the names of national football teams, their Sponsor, Zone
(geographical zone) and Tournament (different important compe-
titions such as the American Cup codified by AC). The categories
Zone and Tournament are connected to Confederation category that
contains associations such as Union of European Football Associ-
ations (UEFA). Figure 1(c) shows the elements for categories of the
dimension Football_Team, and the rollup relations between them.
For instance, CH (the Chilean football team), SP (the Spanish foot-
ball team), AU (the Australian football team), are elements of cat-
egory Team and SA (South America), WEU (Western Europe), and
AS (Asia) are elements of category Zone. The rollup relation be-
tween these categories has the pairs (CH, SA), (SP, WEU) and (AU,
AS).2 The fact table Sales(Team, Date, Total) stores the incomes
for the concept of sales for each team at a specific date. The multi-
dimensional structure allows users to compute queries at different
levels of granularity. For instance, it is easy to compute summaries
such as: total income grouped by zone and month, or total income
per confederation in a specific year, etc. 2

Efficient query answering in DWs relies in the use of pre-computed
results at lower categories to compute aggregates at higher levels in
dimensions hierarchies. In a consistent summarization, each mea-
sure in the fact table can be aggregated at most once. In order to
ensure that this property holds when using pre-computed results,
the dimension must be strict and covering [30, 21, 16, 24]. A di-
mension is strict if all its rollup relations are many-to-one relations.
The dimension is covering if all the rollup relations are such that
they connect all the elements from the lower category to at least one
element in every ancestor category. Ideally all the relations within

1FIFA stands for Fédération Internationale de Football Association.
2For the FIFA, Australia is considered as a country of Asia.
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Figure 1: Football Teams Dimensions

a category should satisfy this property to ensure efficient computa-
tion of summaries. However, when modeling a certain domain, it
might be the case that it is not reasonable for the relation to satisfy
them.

Example 2. In the Football_Team dimension, shown in Figure
1(b) and (c), the rollup relation between categories Team and Spon-
sor is not strict, since a football team might have more than one
sponsor, such as the element CH that has two sponsors. However,
the rollup relation between categories Team and Zone is strict, since
a football team is expected to be associated to a unique geographi-
cal zone. On the other hand, the rollup relation between Team and
Sponsor is not required to be covering since a team might have no
sponsor, such as the element AU. 2

Since in real world applications dimensions are not always strict
and covering, the flexibility to represent non-strict and non-covering
rollup relations has been incorporated as a central feature of several
dimension models [16, 25, 28, 29]. However, in order to guarantee
the ability to compute consistent summarizations, it is important to
know which relations are indeed strict and covering [15, 22]. These
properties can be checked and enforced with strictness and cover-
ing constraint (see Section 2). A dimension is said to be consistent
if it satisfies all its strictness and covering constraints. Otherwise,
the dimension is inconsistent [5]. Checking if a dimension satisfies
its constraints can be done in polynomial time [5].

A dimension may become inconsistent with respect to its con-
straints after update operations [5, 6] which are needed to adapt
dimensions to changes in the data sources or even to correct errors
in the original data [19, 18, 22, 13, 14, 31, 32, 33, 20, 10]. Inconsis-
tent dimensions should be fixed, corrected or repaired, in order to
ensure the correct computation of queries. Intuitively, a repair for
a dimension D with respect to a set of strictness and covering con-
straints Σ is a new dimension that satisfies Σ and that is obtained
by inserting and deleting edges to the original dimension [3, 5]. A
repair is minimal if it is obtained by applying a minimal number of
changes over the original dimension. Repairs can be given to DW’s
administrators as options to correct data errors and materialize the
most suitable one. Moreover, repairs are used as an auxiliary con-
cept for consistent query answering (CQA). Intuitively, a consistent
answer to an aggregate query with grouping of attributes is a range
for each group that contains the aggregation values obtained from
all the minimal repairs [3].

In [5] it was proven that there are cases where the number of min-
imal repairs can be exponential in the number of elements of the
dimension. Moreover, complexity results shown that the problem
of computing a minimal repair is NP-hard, and deciding whether
a dimension D′ is a minimal repair of a dimension D is co-NP-
complete [5]. Due to the complexity results, in the general case,
computing minimal repairs of dimensions that are inconsistent with
respect to a set of covering and strictness constraints is not tractable.

However, as proposed in [5], it is possible to use Datalog programs
under stable model semantics with negation and weak constraints
to represent and compute the minimal repairs of a dimension. Even
though this logic method computes all the possible minimal repairs
for a dimension D with respect to a set of constraints Σ, its appli-
cation over large sets of data is not feasible [5].

In this paper we define a single repair called the compatible re-
pair that is obtained from the inconsistent dimension by perform-
ing insertions of elements and edges and deletions of edges. This
repair differs from the canonical repair presented in [3] which re-
quires the computation of all the minimal repairs of a dimension.
In the case of compatible repairs, we want to represent in a sin-
gle dimension the fact that a certain elements’ rollup relation might
need to be modified to restore consistency and therefore it is not
known to which element in an upper category it rolls-up. In order
to represent this uncertainty in a compatible repair, we introduce
the concept of extended dimension, that is a new dimension where
categories contain sets of elements. In this way a rollup relation be-
tween sets s1 and s0 implies that all rollup combinations between
elements in s0 and s1 can possibly be valid. This ambiguity allows
to represent the unknown ways in which the inconsistent dimension
can be repaired and allows to provide ranges of answers between
the aggregate values that are known to be part of the answer and
values that might be part of it. Thus, the answers from an extended
dimension will not be exact but a range within which the answer is
known to belong.

The rest of the paper is organized as follows: Section 2 presents
dimensions, constraints and repairs. Section 3 presents the ex-
tended dimension and illustrates how to perform query processing
on these dimensions. Section 4 presents the compatible repair. Sec-
tion 5 concludes this article.

2. DIMENSIONS AND REPAIRS
The definitions here are slightly modified from the ones in [5] to

simplify the presentation of the results in this paper.
A hierarchy schema H is a pair (CH,↗H), where (CH,↗H)

is an acyclic directed graph. Vertices in the set CH are categories
and the edges↗H represent the child/parent relations between cat-
egories. The transitive and reflexive closure of↗H is denoted by
↗∗H. The set of categories CH contains a distinguished top cate-
gory denoted AllH, which is reachable from every other category in
CH and has no outgoing edges. Sometimes, we will use ca ↗H cb
instead of (ca, cb) ∈↗H. To simplify presentation we assume that
categories do not have attributes and that they have only one bottom
category, this is a category with only outgoing edges.

A dimension D is a tuple (HD, ED,ElemD, <D), where HD =
(CHD , ↗HD ) is a hierarchy schema; ED is a set of constants,
called elements; ElemD : CHD → P(ED)3 is a function that re-

3P(S) is the powerset of set S.
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Figure 2: Inconsistent dimension and its minimal repairs

turns the elements that belong to a category; and the relation <D⊆
ED × ED represents the child/parent relation between elements of
different categories. We denote by <∗D the reflexive and transitive
closure of <D . The following conditions hold: (i) allD is the only
element in category AllHD . (ii) For all ci, cj ∈ CHD , if ci 6= cj
then ElemD(ci) ∩ ElemD(cj) = ∅. (iii) For all pair of elements
a, b ∈ ED if a <D b then there exists ci, cj ∈ CHD such that
ci ↗H cj , a ∈ ElemD(ci) and b ∈ ElemD(cj). Condition (iii)
ensures that the child/parent relation (<D) only connects elements
of categories that are connected in the schema. In this definition
of dimension we use the function ElemD to obtain the elements of
categories instead of having a function that returns the category of
an specific element as in [15, 5].

Example 3. The hierarchy schema HFT = (CFT,↗FT) in Figure
1(b) is formalized as follows: CFT = {Team, Sponsor, Zone, Tour-
nament, Confederation, All}, and↗FT= {(Team, Sponsor), (Team,
Zone), (Team, Tournament), (Sponsor, All),(Zone, Confederation),
(Tournament, Confederation), (Confederation, All)}.

The dimension Dc = (HFT, Ec,Elemc, <c) given in Figure 1(c)
is formalized as follows:
(i) Ec = { all, CONM, UEFA, AFC, CC,GT, SA, WEU, AS, AC, EC,
ASC, CH, SP, AU};
(ii) Elemc(Team)= {CH,SP,AU}, Elemc(Sponsor)= {CC,GT},
Elemc(Zone)= {SA,WEU,AS}, Elemc(Tournament)= {AC,EC,
ASC}, Elemc(Confederation)= {CONM,UEFA,AFC}, Elemc(All)=
{all}; (iii) <c= {(CH, CC), (CH, GT), (CH, SA), (CH, AC), (SP,
GT), (SP, WEU), (SP, EC), (AU, AS), (AU, ASC), (CC, all), (GT,
all), (SA, CONM), (WEU, UEFA), (AS, AFC), (AC, CONM), (EC,
UEFA), (ASC, AFC), (CONM, all), (UEFA, all), (AFC, all)}. 2

For each pair of categories ci, cj ∈ CHD such that ci ↗∗HD cj ,
there is a rollup relation denoted byRD(ci, cj) that has the follow-
ing set of pairs {(a, b)|a ∈ ElemD(ci), b ∈ ElemD(cj) and a <∗D
b}. For example, the rollup relation between categories Team and
Zone denoted with Rc(Team, Zone) has the pairs: {(CH,SA), (SP,
WEU), (AU, AS)}.

LetRD(ci, cj) be a rollup relation, then: (i)RD(ci, cj) is strict
if RD(ci, cj) is a function, i.e., if for all elements x, y, z in ED ,
if (x, y) ∈ RD(ci, cj) and (x, z) ∈ RD(ci, cj) then y = z.
(ii) RD(ci, cj) is covering if for all elements e ∈ ED such that
e ∈ ElemD(ci), there exists an element e′ ∈ ED such that e′ =
ElemD(cj) and (e, e′) ∈ RD(ci, cj).

In the majority of the research and industrial OLAP applications
dimensions are considered to satisfy all possible strict and cover-
ing constraints that can be defined for the hierarchy of the dimen-
sion [9]. Nevertheless, dimensions might fail to satisfy these con-
ditions [26, 28, 17, 16, 23, 15]. When this happens it is necessary
to specify integrity constraints to identify rollup relations that are

strict or covering, and in this way to be able of keeping the capabil-
ity of computing correct summarizations [17].

Let H = (CH,↗H) be a hierarchy schema and let D = (HD,
ED,ElemD, <D) be a dimension such that HD = H. (i) A strict-
ness constraint overH is an expression of the form ci → cj where
ci, cj ∈ CH and ci ↗∗H cj . The dimension D satisfies the strict-
ness constraint ci → cj if and only if the rollup relationRD(ci, cj)
is strict. (ii) A covering constraint over H is an expression of the
form ci ⇒ cj where ci, cj ∈ CH and ci ↗∗H cj . The dimen-
sion D satisfies the covering constraint ci ⇒ cj if and only if the
rollup relation RD(ci, cj) is covering. A dimension D satisfies Σ
if D satisfies every constraint in Σ. Otherwise, the dimension D is
inconsistent with respect to Σ [5].

Example 4. (example 1 continued) The Football_Team dimen-
sionDc=(HFT, Ec, Elemc, <c) is consistent with respect to the fol-
lowing set of strictness and covering constraints: Σ = {Team →
Zone, Team → Tournament, Zone → Confederation, Tournament
→ Confederation, Team → Confederation, Team ⇒ Zone, Team
⇒ Tournament, Zone⇒ Confederation, Tournament⇒ Confeder-
ation}. On the other hand, the dimension DFT in Figure 2(a) is not
consistent with respect to Σ. In particular DFT violates the strict-
ness constraint Team→ Confederation since the element AR goes
to elements CONM and UEFA in category Confederation. Also, DFT

does not satisfy the covering constraint Tournament⇒ Confedera-
tion since the element ASC in the Tournament category is not con-
nected with an element in the Confederation category. 2

When a dimension does not satisfy its constraints it needs to be
corrected (repaired). In order to define repairs we need the con-
cept of distance: Given two dimensions D = (HD, ED,ElemD,
<D) and D′ = (HD′ , ED′ ,ElemD′ , <D′), the distance between
them, dist(D,D′), is defined as |(<D′ \ <D) ∪ (<D \ <D′)|. In
other words, the distance between two dimensions is the size of the
symmetric difference between the child/parent relations of the two
dimensions.

Let D = (HD, ED,ElemD, <D) be a dimension and Σ be a set
of integrity constraints overHD . (i) A repair ofD with respect to Σ
is a dimension D′ = (HD′ , ED′ ,ElemD′ , <D′) such that HD′ =
HD , ED′ = ED , ElemD′ = ElemD , and D′ satisfies Σ. (ii) A
minimal repair of D with respect to Σ is a repair D′, such that
dist(D,D′) is minimal among all the repairs of D with respect to
Σ.

Example 5. Figure 2(b)-(c) shows the two minimal repairs for
the inconsistent dimension DFT in Figure 2(a). Repair D1

FT is ob-
tained by inserting the edge (AR, AC), and deleting the edge (AR,
EC), this change restores consistency of the strictness constraint
Team→ Confederation. The edge (ASC, AFC) is inserted in D1

FT in



order to satisfy the covering constraint Tournament⇒ Confedera-
tion. Repair D2

FT is obtained by inserting the edges (EC, CONM)
and (ASC, AFC), and deleting the edge (EC, UEFA). Both repairs
are obtained by applying three changes. There are other possible
repairs but they are not minimal. 2

Note that in the repairs, the set of elements in each category of the
original dimension is preserved over all the repairs. In [5] it was
proven that: (i) there always exists a repair for a given dimension
D (it is necessary that each category has at least one element), (ii)
the number of minimal repairs can be exponential in the number of
elements of the dimension, (iii) computing a minimal repair for a
dimension D is NP-hard.

Minimal repairs can be used to compute consistent answers to
queries [1, 3]. To obtain a consistent answer we need to com-
pute every answer in every possible minimal repair. Thus, given
these complexity results, it is of importance to find ways to com-
pute approximate answers that take into consideration the existence
of inconsistencies in the data. In the next section we present the
extended dimension that allow us to introduce sets of elements in
categories.

3. EXTENDED DIMENSION
When a dimension is inconsistent with respect to its constraints

some how there are elements that present ambiguity with respect
to their rollups. For instance a violation of a strictness constraint
ci → cj is produced when there is an element in category ci reaches
more than one element in category cj , thus there is error or impre-
cision in the data. Uncertainty has been analysed in the context of
multidimensional models in [27, 4].

We will repair data inconsistencies by inserting new elements in
categories, thus, we need to formalize the class of dimensions that
support sets of elements in categories.

Definition 1. An extended dimension X is a tuple (HX , EX ,
CElemX ,�X ), whereHX = (CHX ,↗HX ) is a hierarchy schema;
EX is a set of constants, called elements; CElemX : CHX →
P(P(EX )) is a function that, given a category returns a set of sub-
sets of elements in EX ; and the relation �X⊆ P(EX ) × P(EX )
that corresponds to the child/parent relation between elements of
different categories. We denote with �∗X the reflexive and tran-
sitive closure of �X . The following conditions hold: (i) allX is
the only element in category AllHX . (ii) For all ci, cj ∈ CHX , if
ci 6= cj then CElemX (ci) ∩ CElemX (cj) = ∅. (iii) For all pair
of elements a ∈ CElemX (ci) and b ∈ CElemX (cj) if a �X b
then ci ↗HX cj . (iv) For each ci ∈ CHX it holds that: (a)
∅ 6∈ CElemX (ci). (b) If e ∈ CElemX (ci) then for each element
e′ ∈ e it holds that {e′} ∈ CElemX (ci). (v) for the bottom cat-
egory cb ∈ CHX it holds that for every e ∈ CElemX (cb), e is a
singleton. 2

Condition (iii) ensures that the child/parent relation (�X ) only
connects elements of categories that are connected in the schema.
Condition (iv) ensures that every element that is a set in a category
contains only elements of this category. Condition (v) enforces that
elements in the bottom category are only singleton elements, and
in this way, we will be able to join with the data in the fact tables.
In order to simplify presentation we will sometimes replace a sin-
gleton element {e} by e.

Let HX = (CHX ,↗HX ) be a hierarchy schema and let (HX ,
EX , CElemX ,�X ) be an extended dimension for the schema. For
each pair of categories ci, cj ∈ CHX such that ci ↗∗HX cj , there is
a rollup relation denoted by RX (ci, cj) that has the following set
of pairs {(a, b)|a ∈ CElemX (ci), b ∈ CElemX (cj) and a�∗X b}.

All
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Figure 3: Extended Dimension XFT

A strictness constraint over HX is an expression of the form
ci → cj where ci, cj ∈ CHX and ci ↗∗HX cj . The extended
dimensionD satisfies the strictness constraint ci → cj if and only if
for each element ei ∈ CElemX (ci) there are no elements ej , ek ∈
CElemX (cj) such that ej 6= ek and ei �∗ ej and ei �∗ ek. A
covering constraint overHX is an expression of the form ci ⇒ cj
where ci, cj ∈ CHX and ci ↗∗HX cj . The dimension D satisfies
the covering constraint ci ⇒ cj if and only if the for every ei ∈
CElemX (ci) there exists an element ej ∈ CElemX (cj) such that
ei �∗ ej .

We say that an extended dimension X satisfies Σ if X satisfies
every constraint in Σ. Otherwise, the extended dimension X is
inconsistent with respect to Σ.

Example 6. A possible extended dimension XFT for the hierar-
chy schema in Figure 1(b) is shown in Figure 3. The rollup rela-
tion between categories Team and Zone,RX (Team, Zone), has the
pairs: {(t1,z1), (t2,{z2, z3}),(t3, z3), (t4,z2), (t5,{z1,z3}), (t6,z4)}.
Note that some of the elements in Zone are sets. The extended di-
mension X satisfies the set of constraints Σ = {Team → Zone,
Team→ Tournament, Zone→ Confederation, Tournament→ Con-
federation, Team → Confederation, Team ⇒ Zone, Team ⇒ Tour-
nament, Zone⇒ Confederation, Tournament⇒ Confederation}.

Note that an extended dimension can be treated as a traditional
dimension where all sets belonging to a category are considered
as simple elements. For example, the extended dimension XFT in
Figure 3, can be seen as a traditional dimension where categories
Team, Zone and Tournament contain six distinct elements and cat-
egory Confederation contains seven distinct elements. However,
note that this results in loosing the information about the connec-
tion between elements. For example, it would interpret that there is
no connection between elements o1 and {o1, o2}.

Definition 2. For an extended dimensionX = (HX , EX , CElemX ,
�X ), with HX = (CHX ,↗HX ), its associated dimension, de-
noted T (X ), is a dimension (HD, ED,ElemD, <D), where:
• HD = HX ,
• ED =

⋃
ci∈CHX

CElemX (ci),
• ElemD = CElemX with domain in ED , and
• <D=�X which relates elements in ED . 2

Since for an extended dimension X we have a dimension T (X )
we could think that when posing a query we could use techniques
currently implemented in DWs systems. However, as we will show,
query answering needs to be redefined for extended dimensions to
take full advantage of the flexibility given by extended dimensions.



Confederation Year SUM COUNT
t1 c1 {2010,2011} 400 1
t2 c1 2011 400 1
t3 c1 2012 200 1
t4 c1 {2012,2013} 300 1
t5 {c1, c2} 2010 600 1
t6 {c1, c2} 2011 100 1
t7 {c1, c2} {2012,2013} 200 1
t8 {c1, c2} 2013 100 1
t9 {c1, c2, c3} 2010 400 1
t10 {c1, c2, c3} {2010,2011} 300 1
t11 {c1, c2, c3} {2012,2013} 500 1
t12 {c1, c2, c3} 2013 600 1
t13 {c2, c3} 2010 100 1
t14 {c2, c3} 2011 200 1
t15 {c2, c3} {2012,2013} 300 1
t16 {c2, c3} 2013 500 1
t17 c3 {2010,2012} 300 1
t18 c3 2011 300 1
t19 c3 2012 500 1
t20 c3 2013 200 1
t21 c4 2013 300 1

Table 1: Answers to queries over dimensions T (XFT) and
T (XTIME) and a fact table Sales

In DWs the most common aggregate queries are those that per-
form grouping by the values of a set of attributes, and return a single
aggregate value per group. An aggregate query is of the form:

SELECT Aj , . . . An, f(A)
FROM T, Ri, . . . Rm

WHERE conditions
GROUP BY Aj , . . . An

Aj ,. . . An are attributes of the
fact table T or the rollup func-
tions Ri, . . . Rm (treated as ta-
bles), and f is a function, such
as: min(A), max(A), count(A),
sum(A), applied to attribute A,
with A ∩ {Aj , . . . An}= ∅.

Definition 3. An answer to an aggregate query Q over dimen-
sions D1, . . . ,Di, . . . ,Dn and a fact table F is a tuple of the form
〈t1, . . . , tn, c〉, where each ti is an element of Di, and c is the
value returned for the aggregate function for the group 〈t1, . . . , tn〉
in the fact table F . The set of answers of Q over dimensions
D1, . . . ,Di, . . . ,Dn and a fact table F is denoted byQ({D1, . . . ,
Di, . . . ,Dn}, F ). 2

Given a cube with extended dimensions X1, . . . ,Xi, . . . ,Xn, fact
table F and query Q we could try to provide answers by simply
evaluating the query over dimensions T (Xi) for i ∈ [1, n], namely
Q({T (X1), . . . , T (Xi), . . . , T (Xn)}, F ). In the following exam-
ple we show that the results obtained with this method do not al-
low the user to see the effect of the relationship between elements
within a category.

Example 7. Consider Table 1 that shows a set of answers that
can be obtained from a Sales fact table (which is not shown here be-
cause of space restrictions) when posing aggregate queries Qj that
obtain, respectively, the SUM and COUNT of incomes grouped by
Confederation, and Year over dimensions T (XFT), and T (XTIME).
It is easy to see that the results in Qj({T (XFT), T (XTIME)},Sales)
do not capture the fact that different elements might contribute to
the same aggregation. For instance, tuple t6 in Table 1 might con-
tribute to the answer in tuple t2 since c1 is contained in element
{c1, c2}. 2

Since Q({T (X1), . . . , T (Xi), . . . , T (Xn)}, F ) does not capture
the desired semantics of query answering from extended dimen-
sions, we need to provide a specific formalization for extended
dimensions that takes into consideration the relationship between
elements within a category.

Definition 4. Given a query Q, an extended dimension X =
(HX , EX , CElemX ,�X ), a fact table F , and a tuple t = 〈e1, . . . , en〉
with ei ∈ EX for every i ∈ [1, n], the set of tuples associated to t in
Q({T (X1), . . . , T (Xi), . . . , T (Xn)}, F ), denoted byA(t,Q, {X1,
. . . ,Xi, . . . ,Xn}, F ), is {a|a = 〈s1, . . . , sn, v〉, a ∈ Q(T (X1), . . . ,
T (Xi), . . . , T (Xn), F ), ei ∈ si for i ∈ [1, n]}. 2

Intuitively, set A(t,Q, {X1, . . . ,Xi, . . . ,Xn}, F ) contains all the
tuples that might contribute to answer tuple t.

Definition 5. Given a query Q with aggregate function SUM
or COUNT , a set of extended dimension S = {X1, . . . ,Xi,
. . . ,Xn} where Xi = (HXi , EXi , CElemXi ,�Xi), and a fact ta-
ble F , the answers of Q over X and F is denoted by Q̃(S, F ). A
tuple 〈e1, . . . , en, [a, b]〉 with ei ∈ EX for every i ∈ [1, n] and
[a, b] a numerical range belongs to Q̃(S, F ) if and only if: (i)
A(〈e1, . . . , en〉, Q, S, F ) 6= ∅; (ii) one of the following holds:
either a = v when there exists v such that 〈{e1}, . . . , {en}, v〉 ∈
Q({T (X1), . . . , T (Xi), . . . , T (Xn)}, F ) or a = 0 when there
does not exists such v; and b =

∑
〈s1,...,sn,v〉∈V v where V =

A(〈e1, . . . , en〉,Q, S, F ). 2

If we consider, instead of SUM and COUNT different aggregate
functions, then the definition of approximate answer should be mod-
ified since the semantics is tightly connected to it. For instance, in
the case of MIN and MAX, instead of a range, we would be inter-
ested in the set of possible minimal/maximal values that correspond
to the possible answers. Due to space limitations we left this for-
malization for an extended version.

Example 8. Table 2 shows the answers to the aggregates queries
with aggregate functions SUM and COUNT over the extended di-
mensions XFT and XTIME in Figure 3, which are obtained consider-
ing the answers given in Table 1.

Confederation Year SUM COUNT
c1 2010 [0, 1700] [0, 4]
c1 2011 [400, 1200] [1, 4]
c1 2012 [200, 1200] [1, 4]
c1 2013 [0, 1700] [0, 5]
c2 2010 [0, 1400] [0, 4]
c2 2011 [0, 600] [0, 3]
c2 2012 [0, 1000] [0, 3]
c2 2013 [0, 2200] [0, 6]
c3 2010 [0, 1100] [0, 4]
c3 2011 [300, 800] [1, 3]
c3 2012 [500, 1600] [1, 4]
c3 2013 [200, 2100] [1, 5]
c4 2013 [300, 300] [1, 1]

Table 2: Answers to an aggregate query over extended dimen-
sions XFT and XTIME

As an illustration, for tuple t = 〈c1, 2010〉 set A(t, Q, {XFT,
XTIME},Sales) contains tuples t1, t5, t9 and t10 (see Table 1), in this
case, there is no answer for t in Table 1, thus the final answer for the
aggregate query with aggregate function SUM is 〈c1, 2010, [0, 1700]〉,



where 1700 is the sum of the aggregate values for tuples in the
set A(t,Q, {XFT, XTIME},Sales). For tuple t = 〈c1, 2011〉 set
A(t,Q, {XFT, XTIME},Sales) contains the tuples t1, t2, t6 and t10,
since there is an answer for t in Table 1 (tuple t2), the final an-
swer for SUM is 〈c1, 2011, [400, 1200]〉 where value 400 is the
answer for t given by tuple t2 and 1200 is the sum of the aggregate
values for tuples in A(t,Q, {XFT, XTIME},Sales). For the tuple
t = 〈c4, 2010〉 set A(t,Q, {XFT, XTIME},Sales) is empty, since
there is no answer for t in Table 1, then, there is no answer for
this group (and neither for c4 with years 2011 and 2012). How-
ever, for t = 〈c4, 2013〉 the set A(t,Q, {XFT, XTIME},Sales) has
the unique tuple t21 in Table 1, then, the final answer for SUM
is 〈c4, 2013, [300, 300]〉 where value 300 is the answer for t =
〈c4, 2013〉 in Table 1. An analogous analysis can be done for the
aggregate function COUNT. 2

4. COMPATIBLE REPAIR
In this section we present the concept of compatible repair that

is a new extended dimension obtained from the inconsistent dimen-
sion that is consistent with respect to the set of constraints.

The idea behind the compatible repair is to be able of having a
unique repair, to be used to compute approximate answers to ag-
gregate queries. The definition of the compatible repair is inspired
in the method presented in [26] to obtain strict dimensions. Ac-
cording to this method, strictness is restored by inserting new fused
elements into artificial categories. As an example, if an element a
rolls-up to both b and c in a category D, the element {b,c} is cre-
ated in a new category and a is associated with this new composed
element. Also, links are created from the fused element to the orig-
inal parents of a in the conflicting category D. We only create new
elements in conflicting categories when there is no other option to
restore strictness. To formalize the concept of compatible dimen-
sion we use the extended dimension presented in Section 3, which
is a dimension that might have set of elements in categories.

We also need the concept of conflicting category which was in-
troduced in [19]: Given an extended dimension (HX , EX ,CElemX ,
�X ) over a schema HX = (CHX ,↗HX ), a pair of categories
ci and cj such that ci ↗HX cj , a pair of elements a, b with
a ∈ CElemX (ci) and b ∈ CElemX (cj). A category ck such that
cj ↗∗HX ck is a conflicting category, if there exists a category
cm such that cm ↗∗HX ci, there is an alternative path between
cm and ck not including the edge (ci,cj), and a is reached by at
least one element in cm. As an illustration, the category Confed-
eration in the hierarchy schema in Figure 1(a) is conflicting since
there are alternative paths from category Team that reach Confed-
eration. One path starts in Team going to Zone and finally reach-
ing Confederation, the other path starts in Team going to Tourna-
ment and then to Confederation. In this case, we have ci =Zone,
cj =ck =Confederation, and cm =Team. Edges (Team,Tournament)
and (Tournament,Confederation) form an alternative path from Team
to Confederation not including the edge (Zone,Confederation).

Definition 6. Given a dimension D = (HD, ED,ElemD, <D)
which is inconsistent with respect to a set Σ of strictness and cov-
ering constraints. Dimension X = (HX , EX ,CElemX ,�X ) is the
compatible repair of D with respect to Σ if it is obtained through
the Algorithm 1. 2

The compatible repair is obtained from the inconsistent dimen-
sion by inserting new elements and edges and deleting edges. To
perform changes over the dimension it is important to analyze the
existence of evidence of consistency in the inconsistent dimension.
Algorithm 1 receives the set Σ of strictness and covering constraints,

Algorithm 1: Algorithm to Compute the Compatible Repair
Input: Σ,D
Output: Compatible Repair X

1.1 List CC, SC, Evidence
1.2 char *cat_h, *cat_p, *Set, InconsistentC, InconsistentS
1.3 int x, i, j
1.4 GetInconsistenceC(Σc,CC)
1.5 int num_h = total(CC)
1.6 for i← 1 to num_h do
1.7 ClCategory=GetConflictingCategory(); cat_c=Category(CC[i],1)
1.8 cat_p=Category(CC[i],2)
1.9 InconsistentC=GetInconsistentCC(CC[i])

1.10 x = total(InconsistentC)
1.11 for j← 1 to x do
1.12 Evidence=SearchEvidence(InconsistentC)
1.13 if Evidence 6= null then
1.14 Update(Evidence)

1.15 else
1.16 Update(GetFirtsElement(cat_p))

1.17 GetInconsistenceS(Σs,D, SC)
1.18 int num_s = total(SC)
1.19 for i← 1 to num_s do
1.20 ClCategory=GetConflictingCategory(); cat_c=Category(SC[i],1)
1.21 cat_p=Category(SC[i],2)
1.22 InconsistentS=GetInconsistentSC(SC[i])
1.23 x = total(InconsistentS)
1.24 for j← 1 to x do
1.25 Evidence=SearchEvidence(InconsistentS)
1.26 if Evidence 6= null then
1.27 Update(Evidence)

1.28 else
1.29 Set=Elements(InconsistentS,cat_c,cat_p,ClCategory)
1.30 Update(Set)

and the inconsistent dimension D. This algorithm first handles vi-
olations of covering constraints (line 1.4), and then manages the
strictness constraints (line 1.17). The algorithm captures in the list
CC the covering constraints that are violated by dimensionD (line
1.4). Then, for each violated constraint (line 1.6) the algorithm
gets the conflicting category that is related with the current cover-
ing constraint (variable ClCategory), the category in the left hand
side of the constraint, called the child category, which is stored in
variable cat_c, and the category in the right hand side of the con-
straint, called the parent category, which is stored in variable cat_p
(lines 1.7-1.8). Then, the inconsistent elements are captured in the
list InconsistentC (line 1.9). For each of them, the algorithm
searches for the existence of evidence that can be use to restore con-
sistency (line 1.12). If there is evidence, then the algorithm takes
this knowledge to choose an element in the parent category (line
1.14). On the contrary, when no evidence is found, the algorithm
chooses the first element in the parent category of the constraint as
the ancestor to the inconsistent element (line 1.15). The latter op-
tion can leave the dimension inconsistent with respect to strictness
constraints, but this problem is fixed later when dealing with this
kind of constraints.

Then, the algorithm handles violations of strictness constraints
(line 1.17), and for each of the violated constraints (line 1.19), it
gets again the conflicting level, the child and parent categories in
the constraint, and the inconsistent elements (line 1.22). Then, for
each inconsistent element for a given constraint, it searches for ev-
idence of consistency (line 1.25). If such evidence is found, the
algorithm updates the dimension according to the collected knowl-
edge (line 1.27). If not, a new composed element is inserted into
the parent category (value in variable cat_p) and the dimension is
updated such that the inconsistent element will reach this new com-
posed element (line 1.28) .
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Figure 4: Inconsistent dimension and its compatible repair

Proposition 1. Given a dimension D = (HD, ED,ElemD, <D)
and a set Σ of strictness and covering constraints, its compatible
repair X = (HX , EX ,CElemX ,�X ) with respect to Σ is such
that X satisfies Σ. 2

Example 9. Consider the dimension in Figure 2(a) which vio-
lates the covering constraint Tournament⇒ Confederation and the
strictness constraint Team → Confederation. When dealing with
the covering constraint, variable ClCategory stores value Con-
federation, which in this case is the unique conflicting level re-
lated with the covering constraint. Variables cat_c takes value
Tournament and variable cat_p takes value Confederation, the list
InconsistentC stores element ASC from the category Tourna-
ment. Then the algorithm searches for evidence of consistency. In
this case, there is evidence that element ASC should reach element
AFC in category Confederation, since there is a bottom element AU
that reaches ASC and goes to AFC in Confederation via element AS
in category Zone. Then, the algorithm inserts the edge (ASC,AFC)
in the compatible dimension (line 1.14). Then, the algorithm fixes
the violations of the strictness constraint. The list InconsistentS
contains the inconsistent element AR that reaches two different par-
ents in the conflicting category Confederation. In the inconsistent
dimension, the consistent element CH in category Team reaches
element SA in category Zone as the inconsistent element AR, there-
fore, it is an evidence that the edge (SA, CONM) is correct. On the
other hand, AR reaches EC in category Tournament and there is no
other consistent element that reaches EC. Therefore, the algorithm
deletes the edge (EC, UEFA) and inserts the edge (EC, CONM) to
restore consistency (line 1.27). Figure 2(d) shows the compatible
repair X obtained by applying Algorithm 1. In this case, the com-
patible repair coincides with the minimal repairD2 forD in Figure
2(c).

Consider now the inconsistent dimensionD in Figure 4(a) for the
hierarchy schema in Figure 1(a). Dimension D violates the strict-
ness constraint Team→Confederation through the element t2 that
goes to elements c2 and c3 in the Confederation category. In this
case there is no evidence of consistency that help to choose a cor-
rect element in the parent category. Then, the algorithm creates the
composed element {c2, c3} which is inserted in the Confederation
category. Then, the parents of t2 are related to it. In this case, ele-
ments z2 in the Zone category and o2 in the Tournament category.
The algorithm returns the compatible repair in Figure 4(b). 2

Algorithm 1 runs in O(c∗max(n1, . . . , nn)) + O(s∗max(m1,
. . . ,mn)), where c is the number of covering constraints violated
in dimension D, each ni in n1, . . . , nn is the number of incon-
sistent elements for a covering constraint ci that is violated in D,
s is the number of strictness constraint violated in dimension D,
and each mj in m1, . . . ,mn is the number of inconsistent ele-
ments for a strictness constraint si that is violated in D. Then,

the algorithm runs in O(max(O(c ∗ max(n1, . . . , nn)), O(s ∗
max(m1, . . . ,mn)))).

4.1 Answers from the Clean Compatible Re-
pair

If queries are posed over inconsistent dimensions we get incor-
rect answers, then we can use the compatible repair to obtain ap-
proximate answers to the aggregate queries. The answers can be
computed as shown before for extended dimensions.

Example 10. Consider the inconsistent dimension if Figure 2(a),
and the fact table Sales1 that stores the incomes for concept of
sales (in US dollars) for national teams:

Sales1
Team Date Total
CH 01-01-2013 6000
AR 01-05-2013 3000
AU 01-08-2013 5000
CH 01-12-2013 8000
AR 01-16-2013 8000
AU 01-20-2013 8000

Sales2
Team Date Total

t1 01-01-2013 5000
t2 01-05-2013 4000
t1 01-12-2013 8000
t2 01-16-2013 2000

The following aggregate query Q obtain the total of incomes
grouped by confederation: SELECTR.Confederation, SUM(S.Total)
FROMR(Team, Confederation) R, Sales S WHERER.Team = S.Team
GROUP BY R2.Confederation.

The answer to this query in the inconsistent dimension is {(CONM,
25000), (UEFA, 11000), (AFC,13000)} which is incorrect since the
sales of element AR are considered twice (for element CONM and
for element UEFA). The answer obtained in the compatible repair
(Figure 2(d)) is {(CONM, 25000), (AFC,13000)}. There is no dou-
ble counting in this answer since the compatible repair is consistent
with respect to the constraints.

Now consider the fact table Sales2 for elements of the incon-
sistent dimension in Figure 4(a). The answer to query Q in the
inconsistent dimension is {(c1, 13000), (c2, 6000), (c3, 6000)}
which is incorrect since the incomes to t2 are counting twice. The
answer in the compatible repair in Figure 4(b), seen as a non-
extended dimension is {(c1, 13000), ({c2,c3}, 6000)}, where ({c2,c3},
6000) intuitively represents that value 6000 belongs either to c2
or to c3. Thus, the answer to the compatible repair, which is an
extended dimension, would be {(c1, 13000), (c2, [0, 6000]), (c3,
[0, 6000])}. 2

5. CONCLUSIONS
In this paper we study the problem of inconsistent dimensions

and propose a technique for cleaning them based on the use of ex-
tended dimensions which allow for the insertion of unions of ele-
ments that already belong to a category. This new extended dimen-
sion allow us to express imprecision on the data. Uncertainty and
imprecision have been analysed in the context of multidimensional
models in [27, 4]. In particular in [4] imprecision is allowed in
dimensions values, and uncertainty in measures values in the fact
tables.

The extended dimension is of interest by itself since it can be
used to both represent and query uncertain data. In order to com-
pute the answers possed to extended dimensions it is possible to
post-process the answers obtained from current DWs implementa-
tions and therefore getting approximate answers efficiently.

The compatible repair is an extended dimension obtained from
the inconsistent dimension that satisfies the strictness and covering
constraints. This repair allows to deal with ambiguities that arise
from the inconsistencies and can provide ranges for the answers to
aggregate queries with functions such as SUM and COUNT. The



definition of the canonical repair is inspired by the work proposed
by Pedersen et. al. [26], where strictness is restored by inserting
new elements in artificial categories. Here we create composed ele-
ments to restore strictness but as a last option, also we do not create
new categories in dimensions. The compatible repair we present
differs from the canonical repair presented in [3] which is a new
dimension that represents all the minimal repairs of an inconsistent
dimension and therefore cannot be computed in polynomial time.

The problem of repairing relational databases with respect to a
set of integrity constraints such that functional dependencies and
inclusion dependencies has been extensively studied (cf. [1] for
a survey). In [5] it was shown that even though there are several
ways to represent a data warehouse using relational models (e.g.
star schema or snowflake schema [7]) it is not possible to use the
relational repair techniques to compute DW’s repairs.

The compatible repair can be considered in the category of data
cleaning based in data cleaning [2, 12, 11]. In [8] a framework to
improve data quality with respect to conditional functional depen-
dencies is presented. There, database repairs are obtained by at-
tribute modifications and they implement an statistical method that
modifies attribute values and ensures that the repairs are accurate.
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