
CQA-WF: Consistent Query Answers to
Conjunctive Queries using the

Well-Founded Semantics
Julia Belmar Jennifer Cuevas Mónica Caniupán

Universidad del Bı́o-Bı́o
Concepción, Chile

{jbelmar,jcuevas,mcaniupa}@ubiobio.cl

Abstract—A database instance can become incon-
sistent with respect to its integrity constraints (ICs),
for instance, after update operations. When this
happens, it is possible to compute the repairs of
the database. A minimal repair is a new database
instance that satisfies the ICs, is obtained by applying
update operations over the original instance, and
differs minimally from the original instance. We can
evaluate queries over the repairs, an answer to a
conjunctive query is consistent if it is an answer in
every repair. The repairs of database instances can
be specified by repair programs. Moreover, we can
compute consistent answers to queries by evaluating
query programs together with the repair programs
under the stable model semantics. The use of logic
programs does not exceed the intrinsic complexity of
consistent query answering. Nevertheless, for a certain
class of conjunctive queries and ICs it is possible
to use the alternative well-founded semantics (WFS)
to evaluate queries. We present CQA-WF, a system
that allows the computation of consistent answers to
conjunctive queries over inconsistent databases with
respect to functional dependencies (FDs). CQA-WF
evaluates logic programs under the WFS. The WFS
has lower data complexity than the stable models
semantics.

Keywords-Well-founded semantics; inconsistencies,
functional dependencies, repairs, consistent query an-
swering;

I. INTRODUCTION

The integrity constraints (ICs) play an important
role in databases, because, they capture the intended
meaning (semantics) of the data in the database.
Nevertheless, it has been reported that databases
may become inconsistent with respect to their ICs

due to several reasons [1]. We can repair incon-
sistent databases by performing updates operations
over the instances. The notion of database repair
was first introduced in [2] ([3] is a good survey in
relational repairs). Intuitively, a minimal repair of
a database instance D with respect to a set of ICs
IC, is a new database instance D′ over the same
schema of D, that is obtained from D by deleting
or inserting whole database tuples, satisfies the ICs,
and departs minimally from D under set inclusion.
The notion of consistent answer to a first order
query was also defined in [2]. A ground tuple t̄ is a
consistent answer to a query Q(x̄) in a database
instance D if it is an answer to Q(x̄) in every
minimal, under set inclusion, repair of D.

Example 1. Consider the database schema P (x, y)
and the following functional dependency over P
ψ : x → y. The first two tuples of P violate the
functional dependency:

P

x y
a b
a c
b d

P ′

x y
a c
b d

P
′′

x y
a b
b d

Consistency can be minimally restored by delet-
ing either tuple P (a, b) or tuple P (a, c). Therefore,
there are two database repairs P ′ and P

′′
. Tuple

P (b, d) persists in the repairs, since it does not
violate the FD ψ. The consistent answer to query
P (x, d) is {b}, since it is the answer in every repair.
For the boolean disjunctive query P (a, b)∨P (a, c)



the consistent answer is yes, since both database
repairs satisfy either one of the tuples in the query.
Notice that if we had deleted all the inconsistent
data, we would have lost this information. 2

In the general case, the data complexity of con-
sistent query answering (CQA) is ΠP

2 -complete
[1], [3], [4]. Consequently, it is necessary to use
an expressive language, such as, disjunctive logic
programs under stable models semantics, for which
query evaluation has the same data complexity
[5]. Disjunctive repair programs with stable models
semantics [6], [7] were first introduced in [8], [9]
to specify database repairs. Later, simpler and more
general repair programs were introduced in [10],
[11], [12], [13] for CQA. The logic programming
approach works for all universal ICs and queries
that are first order or even expressed in Datalog
with negation. In [11], [12] it was shown that there
is a one to one correspondence between the stable
models of the repair program and the database
repairs with respect to a set of ICs. Nevertheless,
it is possible to identify classes of ICs and queries,
for which CQA has lower data complexity. Some
polynomial time cases of CQA have been identified
in [2], [11], [14], [15]

In this paper we explore the use of the well-
founded semantics (WFS) of programs [16], [17]
to CQA. This semantics has lower data complexity
than the stable models semantics, and therefore,
it becomes a good alternative for cases in which
CQA has lower data complexity. In particular, we
present CQA-WF, a system that computes consistent
query answers to a class of conjunctive queries, with
respect to functional dependencies, and that is based
in the WFS.

The paper is organized as follows. Section II
presents the notion of database repairs, consistent
answers to queries and repair programs. Section III
presents the WFS and describes the use of the WFS
in CQA. Section IV describes the architecture of the
system. Finally Section V presents finals remarks
and future work.

II. PRELIMINARIES

We consider a relational database schema Σ =
(U ,R,B), where U is the possibly infinite database

domain with null ∈ U , R is a fixed set of database
predicates, each of them with a finite, and ordered
set of attributes, and B is a fixed set of built-in
predicates, like comparison predicates, e.g. {<,>
,=, 6=}. R[i] denotes the attribute in position i of
predicate R ∈ R. Database instances of a relational
schema Σ are finite collections D of ground atoms
of the form R(c1, ..., cn), which are called database
tuples, where R ∈ R, and (c1, ..., cn) is a tuple of
constants, i.e., elements of U . The extensions for
built-in predicates are fixed, and possibly infinite in
every database instance.

A functional dependency DF over a relation P
is denoted by [14]:

∀x̄1x̄2x̄3x̄4x̄5.¬[P (x̄1, x̄2, x̄4) ∧ P (x̄1, x̄3, x̄5)

∧x̄2 6= x̄3]. (1)

We can also write a functional dependencies as
X → Y , where X and Y are set of attributes of P
and X ∩ Y = ∅. The functional dependency on P
is satisfied if tuples in P that have the same values
in attributes in X , also have the same values for
the attributes in Y . If a database fails to satisfy its
functional dependencies then, it is inconsistent with
respect to them.

The semantics of constraint satisfaction in pres-
ence of null values we consider is the one defined in
[12]. In order to present it, we need to introduce the
concept of relevant attribute. In presence of func-
tional dependencies only, an attribute is relevant if it
appears at least two times in a FD ψ. The set of rel-
evant attributes with respect to a FD ψ is denoted by
A(ψ). For a set of attributes A(ψ) and a predicate
P ∈ R, PA denotes the predicate P restricted to the
attributes in A(ψ). DA denotes the database D with
all its database atoms projected onto the attributes
in A, i.e., DA = {PA(ΠA(t̄)) | P (t̄) ∈ D}, where
ΠA(t̄) is the projection on A of tuple t̄. DA has
the same underlying domain U as D.

A database instance D satisfies a functional de-
pendency ψ : X → Y over relation P , denoted by
D �N ψ , if and only if DA(ψ) � ψN , where �N
denotes satisfaction in presence of null values. This
is, D satisfies ψ if any of the relevant attributes



has a null value or the functional dependency is
satisfied in the traditional way.

Example 2. Consider the functional dependency
ψ: ∀xyzmn(P (x, y,m) ∧ P (x, z, n) → y = z)
over relation P and the database instance D =
{P (a, b, a), P (b, c, a), P (a,null , d)}. The relevant
attributes to ψ are x, y, z, since they appear twice in
ψ. Then, to verify consistency it is needed to check
if ∀xyz(PA(ψ)(x, y) ∧ PA(ψ)(x, z) → y = z). D
is consistent with respect to ψ since, even though
there are two tuples that share the value for the first
attribute, P (a, b, a) and P (a, null, d), the second
tuple has a null value in a relevant attribute. The
instance D′ = {P (a, b, c), P (a, c, d), P (b, c, a)}, is
inconsistent with respect to ψ through the first two
tuples. 2

A. Database Repairs and Consistent Query An-
swers

Inconsistencies with respect to functional de-
pendencies can be restored by deleting tuples. In
order to formally define database repairs, we need
to introduce the following concept: Let D,D′ be
database instances over the same schema and do-
main. The distance, ∆(D,D′), between D and D′

is the symmetric difference ∆(D,D′) = (D r
D′) ∪ (D′ rD) [2].

It is possible to define a partial order between
database instances.

Definition 1. [12] Let D,D′, D′′ be database in-
stances over the same schema and domain U . It
holds D′ ≤D D′′ if and only if:
• For every atom P (ā) ∈ ∆(D,D′), with ā ∈

(U r{null}), it holds that P (ā) ∈ ∆(D,D′′).
• For every atom Q(ā,null) ∈ ∆(D,D′), with
ā ∈ (Ur{null}), there exists a b̄ ∈ U such that
Q(ā, b̄) ∈ ∆(D,D′′) and Q(ā, b̄) 6∈ ∆(D,D′).
2

This partial order is used to define the repairs of
an inconsistent database.

Definition 2. [12] Given a database instance D and
a set FD of FDs, a repair of D with respect to FD
is a database instance D′ over the same schema of
D, such that:

(a) D′ �N FD.
(b) D′ is ≤D-minimal in the class of database

instances that satisfy FD with respect to |=
N

,
i.e., there is no database D′′ in this class
with D′′ <D D′, where D′′ <D D′ means
D′′ ≤D D′ but not D′ ≤D D′′.

The set of repairs of D with respect to FD is
denoted by Rep(D ,FD). 2

A consistent answer to a first order query posed
over a possibly inconsistent database D with respect
to a set FD of FDs is defined as follows:

Definition 3. [2] Given a database instance D, a
tuple t̄ is a consistent answer to a query Q(x̄) in
D if and only if t̄ is an answer to query Q(x̄) in
every repair D′ of D. Moreover, if a query Q is
an L-sentence, i.e., a boolean query, the consistent
answer is yes if Q is true in every repair D′ of D;
and no, otherwise. 2

Example 3. Consider the database instance D =
{P (b, c), P (c, a), P (b, e)} and the FD ψ : x → y
over relation P . D is inconsistent with respect to ψ
through tuples P (b, c) and P (b, e). There are two
minimal database repairs: D1 = {P (b, c), P (c, a)}
and D2 = {P (b, e), P (c, a)}. D1 is obtained by
eliminating tuple P (b, e), and D2 is obtained by
eliminating tuple P (b, c). The distances between
D and D1 and D2 are: ∆(D,D1) = {P (b, e)},
∆(D,D2) = {P (b, c)}. Note that D3 = {P (c, a)}
is also a repair of D, but it is not minimal
since ∆(D,D3) = {P (b, c), P (b, e)} and it holds
that ∆(D,D1) ⊆ ∆(D,D3) and ∆(D,D2) ⊆
∆(D,D3). The consistent answer to query Q(x) :
P (x, y) is {b, c} 2

B. Repair Programs

Database repairs can be specified as stable mod-
els (SM) of disjunctive logic programs [6], [7].
Given an inconsistent database instance D and a
set FD of functional dependencies, a disjunctive
repair program Π(D,FD) is constructed, such that
there is a one to one correspondence between the
stable models of Π(D,FD) and the repairs of D
[12].

The repair programs use annotations constants,
whose role is to enable the definition of atoms that



can become true in the repairs or false in order to
satisfy the FDs. Actually, each atom of the form
P (ā) can receive one of the constants in Table I.

Annotation Atom Meaning
fa P (ā, fa) P (ā) is advised to be made false.
t? P (ā, t?) P (ā) is true or is made true.
t?? P (ā, t??) P (ā) is true in the repair.

TABLE I
ANNOTATION CONSTANTS

Definition 4 can be derived from the definition of
repair programs given in [12] for general integrity
constraints.

Definition 4. The repair program Π(D,FD) for
a database instance D and set FD of functional
dependencies is composed by the following rules:

• For each atom P (ā) ∈ D the fact P (ā).
• For every FD ψ of the form (1) the rule:
P (x̄1, x̄2, x̄4, fa) ∨ P (x̄1, x̄3, x̄5, fa) ←
P (x̄1, x̄2, x̄4, t

?), P (x̄1, x̄3, x̄5, t
?), x̄2 6=

x̄3, x̄1 6= null , x̄2 6= null , x̄3 6= null .
• For each predicate P ∈ R, the annotation rule:
P (x̄, t?)← P (x̄).

• For every predicate P ∈ R, the interpretation
rule:
P (x̄, t??) ← P (x̄, t?), not P (x̄, fa). 2

Example 4. The repair program Π(D,DF ) for the
functional dependency ψ : x → y over P , and the
database instance D = {P (b, c), P (c, a), P (b, e)}
in Example 3 has the following rules:

1) P (b, c). P (c, a). P (b, e).
2) P (x, y, fa) ∨ P (x, z, fa) ← P (x, y, t?),

P (x, z, t?), y 6= z, x 6= null, y 6= null, z 6=
null.

3) P (x, y, t?)← P (x, y).
4) P (x, y, t??) ← P (x, y, t?), not

P (x, y, fa).

Rules in (1) are the facts. Rule (2) says that either
P (x, y) or P (x, z) needs to be eliminated in order
to restore consistency of ψ. Rule (3) defines the
tuples that are true in the program. Rule (4) defines
the tuples that remain true in the repairs.

Program Π(D,DF ) has two stables models1:
M1 = {P (b, e, fa), P (b, c, t??), P (c, a, t??)},
M2 = {P (b, c, fa), P (b, e, t??), P (c, a, t??)}.
The stable model M1 says that consistency can
be restored by deleting the tuple P (b, e), and then
the repair is: D1 = {P (b, c), P (c, a)}. The sec-
ond model says that consistency can be restored
by deleting the tuple P (b, c), and the constructed
minimal repair is D2 = {P (b, e), P (c, a)}. 2

In order to use repair programs to compute con-
sistent answers, queries have to be translated into
logic programs. Given a query Q, a new query
Π(Q) is generated by first expressing it as a Datalog
program [18], and next replacing every positive
literal P (s̄) by P (s̄, t??), and every negative literal
not P (s̄) by not P (s̄, t??). Thus, in order to get
consistent answers, we need to create the program
Π(Q)∪Π(D ,FD), and evaluate it under the stable
models semantics with cautious reasoning [6], [7].

Example 5. Query Q(x) : P (x, y) in Example
3 is transformed into the Datalog program
Π(Q) : Ans(x) ← P (x, y, t??). There are two
stable models of Π(D,FD) ∪ Π(Q): M1 =
{P (b, e, fa), P (b, c, t??), P (c, a, t??),Ans(b),
Ans(c)}, M2 = {P (b, c, fa), P (b, e, t??),
P (c, a, t??),Ans(b),Ans(c)}. Therefore, the
consistent answer to Q is {b, c} as expected. 2

III. WELL-FOUNDED SEMANTICS AND CQA
A. Well-founded Semantics

The well-founded semantics for normal logic
programs was introduced in [16], and later extended
to disjunctive logic programs [19], [20]. It has been
used as an alternative to the stable models semantics
[21], [6], [7]. In fact, if a general logic program
has a total well-founded model, that model is the
unique stable model [16]. We adopt the framework
presented in [19], that defines the WFS in terms of
an operator that maps interpretations to interpreta-
tions, obtaining a well-founded interpretation (WFI)
as a least fixpoint.

The WFI for a ground disjunctive program Π
consists of three disjoint and complementary sets of

1For simplification purposes, the stable models are restricted
to the atoms annotated with fa and t??.



ground atoms: WΠ = 〈W+, W−, Wu〉, where W+

is the set of true atoms, W− is the set of false atoms,
and Wu is the set of undetermined atoms [19]. The
WFI is defined as the least fixpoint of an operator
WΠ, that is a mapping between interpretations of
the form I = 〈I+, I−, Iu〉, with I+, I−, Iu disjoint
sets of ground atoms that cover the whole Herbrand
base of the program [21].

The stable models semantics tries to find alterna-
tive models for the program (possibly more than
one), giving to all atoms a true or false value.
Therefore, a program can have several alternative
stable models, but only one WFI. The stable models
can be computed from the WFI by, starting from
the atoms which are true or false, trying to give
different values to the unknown atoms. Therefore,
the set W+ of true atoms of the WFI is contained
in every stable model of the program, and the set
of false atoms of the WFI is a subset of the set
of atoms that are false in every stable model [19],
[16].

If we define a literal as a formula of the form
A or not A, with A atomic, then interpretations I
can be represented as sets of ground literals. In this
case, I+ is the set of atoms (i.e., positive literals)
in I , and I− is not .{ not A | not A ∈ I},2 and
Iu = {A | A is ground atom and both A, not A /∈
I}. Then, Iu becomes implicitly the set of atoms
A such that neither A nor not A can be found in
I+ ∪ not .I−.

The operator WΠ is based in an extension of the
notion of unfounded set to disjunctive programs.
Unfounded sets contain atoms that are definitely not
derivable from a given program with respect to a
given interpretation, and as a consequence, they are
declared false.

Definition 5. [19] Let I be an interpretation for (the
ground version of a) program Π. A set X ⊆ BΠ

of ground atoms is an unfounded set for Π with
respect to I if for each a ∈ X (an unfounded atom
in X), for each rule r ∈ Π (the instantiated i.e.,
ground version of Π), such that a ∈ H(r), the head

2Remark not .L, with L a set of literals, is the set of literals
that are complementary to those in L. For a literal L, not .L
denotes the literal that is complementary to L.

of rule r, at least one of the following conditions
holds:

(a) B(r) ∩ not .I 6= ∅, i.e., the body of r is false
regarding I .

(b) B+(r)∩X 6= ∅, i.e., some positive body literal
belongs to X .

(c) (H(r)rX)∩ I 6= ∅, i.e., an atom in the head
of r, distinct from a and other elements in X ,
is true with respect to I . 2

The union of all the unfounded sets for a program
Π regarding an interpretation I , GUSΠ(I), is called
the greatest unfounded set with respect to I . For
normal programs, the GUS is also an unfounded
set, but for disjunctive programs this might not be
the case [19]. However, it has been shown that for
our repair programs GUS is an unfounded set [22].

Definition 6. Given a ground disjunctive program
Π, the well-founded operator (WFO), denoted by
WΠ, is defined on interpretations I for which
GUSΠ(I) is unfounded, by:

WΠ(I) := ΓΠ(I) ∪ not .GUSΠ(I),

where ΓΠ(I) is the immediate consequence opera-
tor that declares an atom A true with respect to I if
there exists a rule in Π, such that A is in the head
of the rule, the body of the rule is true with respect
to I , and the other atoms in the head of the rule (if
any) are false with respect to I . 2

The well founded interpretation of a ground
program Π is defined as the fixpoint WΠ of the
interpretations defined by: W0 := ∅, Wk+1 :=
WΠ(Wk). WΠ can be computed in polynomial time
[19].

Example 6. The WFI for the repair program in
Example 4 is3: (i) W+ = {P (c, a, t??)}. (ii) Wu

= {P (b, e, fa), P (b, e, t??), P (b, c, fa), P (b, c,
t??)}. (iii) W− is composed for combina-
tions of atoms of the form P (c1, c2, fa) and
P (c1, c2, t

??). 2

3For simplification purposes, the WFS is restricted to the
atoms annotated with t??, fa or Ans atoms.



B. Using the WFI of Programs in CQA

In this section we use the concepts of safe
database and conflict closure of a database, which
were presented in [13]. The safe database is the
portion of the database that does not participate in
any violation of FDs, and that will never be touched
by the repair process. The conflict closure of a
database is the set of tuples that violate the FDs
or are going to be changed to avoid new violations
of FDs. According to [22] we are able to capture the
safe and affected database by using W+ and Wu of
the WFI of program Π(D,FD), when considering
only one functional dependency or key dependency
per relation. Therefore, as in [13] we could compute
database repairs by computing the repairs for the
affected portion of data, and then combining them
with the safe portion of data. However, we are not
interested in computing repairs, but in retrieving
consistent answers to queries. Thus, what we want
is to use as much as possible sets W+ and Wu of
the WFI of program Π(D,FD), to compute con-
sistent answers to conjunctive queries with respect
to FDs.

In order to use the WFI of programs for CQA we
have to restrict ourselves to the restricted classes of
conjunctive queries of the form (2) and (3) [14].

Ans(w1 . . . wm)← ∃z1 . . . zn(P1(x̄1), . . . Pn(x̄n)), 4

(2)
where w1 . . . wm, z1 . . . zn are all the variables that
appear in the atoms of the body of the query, each
x̄i matches the arity of Pi, variables w1 . . . wm are
the free variables of the query. The query is called
simple if there are no constants and no repeated
symbols in the query (no joins between relations
are allowed).

Ans ← ∃z1 . . . zn(P1(x̄1), . . . Pn(x̄n)), (3)

where z1 . . . zn are variables that appear in the
atoms of the query, and x̄1 . . . x̄n are variables
and/or constants, and no joins between relations are
allowed.

4Usually the existential quantifiers are implicit on the query,
but in this section, we will write them explicitelly on queries.

Definition 7. [22] For a database instance D , set
FD of FDs, and a conjunctive query Q of the form
(2), a tuple t̄ is a well-founded answer to Q if
Ans(t̄) is in W+ ∪ Wu of the WFI of program
Π(D ,FD ,Q). The set of well-founded answers to
Q are denoted by WFA+u(Q). 2

The set Wu of the WFI of programs can only be
used directly for CQA when the attributes projected
in the query are attributes in the antecedent of
some FD, because in this case, the inconsistent
tuples from Wu will have the same value for
these attributes. Therefore, we can use the WFI of
programs directly to compute consistent answers
to queries of the form (2) when each of the free
variables on it refer to attributes in the antecedent
of a FD.

Definition 8. [22] Given a relation P with FD
X → Y , we can divide the attributes of P into: (i)
antecedent attributes, i.e., the attributes in X . (ii)
consequent attributes, i.e., the attributes in Y . (iii)
simple attributes, which are attributes neither in X
nor Y . Moreover, for a query Q of the form (2), we
say that a free variable wi with wi ∈ {w1 . . . wm}
refers to an antecedent (respectively, consequent,
simple) attribute, if wi matches a variable in the
position of an antecedent (respectively, consequent,
simple) attribute on a query predicate P . 2

It was proven in [22] that for a database instance
D , set FD of FDs (at most one functional or key de-
pendency per relation), if the free variables in query
Q of the form (2) refer to antecedent attributes, then
the consistent answers to Q with respect to FD
coincide with the well-founded answers to Q.

Example 7. Consider the relation A(id, name,
age), D = {A(1, john, 11), A(1,mary, 20),
A(2,mary, 20)}, FD ψ : id → name, and
query Q : Ans(x) ← ∃yzA(x, y, z), where x
represents an antecedent attribute. The sets W+

and Wu of the WFI of program Π(D,DF,Q) are:
W+ = {A (2,mary, 20, t??), Ans(2)}. Wu =
{A (1, john, 11, t??), A (1,mary, 20, t??),
Ans(1)}. The well-founded answer is
WFA+u(Q) = {1, 2}, that coincides with
the consistent answer to Q. 2



There are cases where we need to rewrite queries
in such a way that, when they are evaluated on Wu

of Π(D ,FD), they only retrieve consistent answers.
We illustrate this in the example below.

Example 8. For Σ = {R(x, y, z, w)}, FD: z → w,
and D = {R(a, b, c, d), R(a, b, c, e), R(b, c, d, e)}.
For the repair program Π(D ,FD), W+ =
{R (b, c, d, e, t??)}, and Wu = {R (a, b, c, d, t??),
R (a, b, c, e, t??)}. There are two repairs:
{R(b, c, d, e), R(a, b, c, d)} and {R(b, c, d, e),
R(a, b, c, e)}.

For Q: Ans(z, w) ← ∃xyR(x, y, z, w), the
free variable z refers to the attribute in the an-
tecedent of the FD, and variable w refers to its
consequent. For Π(D ,FD ,Q) it holds W+ =
{Ans(d, e)}, and Wu = {Ans(c, d), Ans(c, e)}.
Therefore, WFA+u(Q) are {(d, e), (c, d), (c, e)},
but the consistent answer to Q is {(d, e)}. Thus,
in this case, Wu of Π(D ,FD ,Q) does not pro-
vide consistent answer to the query. However,
we can filter the inconsistent tuples from Wu of
Π(D ,FD) by evaluating the following query on
it: Q′ : Ans(z, w) ← ∃xyR (x, y, z, w, t??) ∧
∀x′y′w′(R (x′, y′, z, w′, t??) → w′ = w). When
Q′ is evaluated on Wu of Π(D ,FD) , the answer is
empty. Therefore, the final answer to Q is {(d, e)}
as expected.

For query Q: Ans(z, x) ← ∃ywR(x, y, z, w),
where the free variable z refers to the attribute
in the antecedent of the FD, and variable x
refers to a simple attribute, W+ of Π(D ,FD ,Q)
is {Ans(d, b)}. Since z refers to an antecedent
attribute, we know that tuples in Wu that are
inconsistent with respect to FD will share the
value for that attribute. Thus, we just need to
ensure that tuples from Wu have the same value
for the attribute referenced by variable x. There-
fore, Q′ is: Ans(z, x) ← ∃ywR (x, y, z, w, t??) ∧
∀x′y′w′(R (x′, y′, z, w′, t??) → x′ = x). The
answer to Q′ evaluated on Wu of Π(D ,FD) is
{(c, a)}. Therefore, the final well-founded answers
to Q are {(d, b), (c, a)}, which coincide with the
consistent answers to Q.

Moreover, for Q: Ans(y) ← ∃xzw
R (x, y, z, w), where variable y refers to a simple
attribute, W+ of Π(D ,FD ,Q) is {Ans(c)}.

Here we just need to ensure that the value for
the attribute referenced by variable y is the
same in every inconsistent tuple in Wu. Hence,
Q′ is: Ans(y) ← ∃xzwR (x, y, z, w, t??) ∧
∀x′y′z′w′(R (x′, y′, z′, w′, t??) → ȳ′ = y). The
answer to Q′ evaluated on Wu of Π(D ,FD) is
{b}. Therefore, the well-founded answers to Q are
{c, b}, which coincide with the consistent answers
to Q. 2

The situation is not different for boolean con-
junctive queries of the form (3). For this kind of
queries we also need a new, rewritten query in
order to retrieve consistent answers from the set of
undetermined atoms of the WFI of a repair program.
However, the new query is only needed when it
is not possible to compute an answer from W+

of Π(D ,FD ,Q). We illustrate this in the example
below.

Example 9. (Example 8 cont.) For Q: Ans ←
∃xzw R(x, c, z, w), W+ of Π(D ,FD ,Q) is
{Ans}, therefore the well-founded answer is
yes, which coincides with the consistent answer.
For Q: Ans ← ∃yzw R(a, y, z, w), W+ of
Π(D ,FD ,Q) does not have an Ans-atom, then
we need to check if we can obtain an answer
from Wu of the repair program. The rewritten
query is: Q′ : Ans ← ∃yzwR (a, y, z, w, t??) ∧
∀x′y′z′w′(R (x′, y′, z′, w′, t??) → x′ = a). When
query Q′ is evaluated on Wu = {R (a, b, c, d, t??),
R (a, b, c, e, t??)}, the answer is yes, since every
inconsistent tuple with respect to the FD has the
same value for the first attribute. Therefore, the
well-founded answer is yes, and coincides with the
consistent answer to Q.

Moreover, for Q: Ans ← ∃xyz R(x, y, z, f),
there is no Ans-atom in W+ of Π(D ,FD ,Q),
then the following rewritten query is gener-
ated: Q′ : Ans ← ∃xyzR (x, y, z, f, t??) ∧
∀x′y′z′w′(R (x′, y′, z′, w′, t??) → w′ = f.) How-
ever, the answer to Q′ is also negative in Wu,
hence the well-founded answer to Q is no, which
coincides with the consistent answer to Q. 2

IV. SYSTEM

CQA-WF is a web system that computes consis-



Fig. 1. CQA-WF’s architecture.

tent answers to conjunctive queries of form (2) and
(3) based in the well-founded interpretation of logic
programs. CQA-WF uses an algorithm implemented
in PROLOG language5 to compute sets W+ and
Wu of the WFI of programs. This algorithm works
for Datalog programs with negation but without
disjunction.6 Repair programs are disjunctive pro-
grams, however, when we consider only functional
dependencies we can translated the disjunctive re-
pair programs into non-disjunctive programs (see
[22] for details). Therefore, CQA-WF generates
repair programs free of disjunction, these programs
are equivalent to the original programs in terms of
their stable models.

Figure 1 shows the architecture of the system.
CQA-WF allows the edition of functional depen-
dencies and queries. The system checks syntax of
FDs and queries, generates rewritten queries, repair
programs and query programs, and also retrieves
well-founded (consistent) answers to queries. The
system is composed by the following modules:

1) FDs editor: that allows the edition of FDs.
2) Queries editor: that permits to write queries.
3) Syntax checker: that verifies the syntax of FDs

and queries.
4) RP validation: that verifies that the system

5http://www.swi-prolog.org/
6Algorithm reported in “A Tiny Interpreter for Datalog with

Well-Founded”, Bertram Ludäsher, 1995.

Rewritten Query Generation(FD,Q)

set of variables: FANS, AV, CV, AVP, CVP;
Π(Q) := GenerateQueryProgram(Q);
Qrew := Π(Q);
FANS := IdentifyFreeV ariables(Q);
AV := IdentifyV ariablesInAntecedentsFDs(Q,FD);
CV := IdentifyV ariablesInConsequentsFDs(Q,FD);
For each P (x̄) ∈ Q do

AVP := x̄ ∩ AV ;
CVP := x̄ ∩ CV ;
FVP := x̄ ∩ FANS ;
if ({AVP ∪ CVP ∪ FVP} 6= ∅) then
ȳ := x̄r AVP ;
ȳ := GenerateFreshVariables(ȳ);
Qrew := Qrew ∧ ∀ȳGenerateAtom(P (x̄), ȳ,

AVP, CVP,FVP);
end if

end for
return Qrew

Fig. 2. Algorithm for queries of the form (2)

has all the needed data to construct logic
programs.

5) Rewrite generator: that generates rewritten
queries.

6) RP generator: that generates repair pro-
grams.

7) RPQ generator: that generates query pro-
grams.

8) WFI generator: that computes the relevant
sets W+ and Wu of the WFI of programs.

9) CQA generator: that gets well-founded an-
swers to queries.

10) Answers retriever: that retrieves the consistent
answers to queries.

Figure 2 presents the algorithm that generates a
rewritten query Qrew for a given query Q of the
form (2). The input to the algorithm consists of the
set FD of FDs, and the query Q. The algorithm
first identifies the free variables in Q. After that,
it determines which variables refer to attributes in
FDs. Then, for each atom in the query that shares
variables with the Ans predicate, an atom in the
rewritten query is generated. A tuple t̄ is an answer
to the rewritten query if tuples from set Wu of
Π(D ,FD) have the same values for the attributes
referenced by the free variables in the query.

Figure 3 shows the algorithm that generates a
rewritten query Qrew for a query Q of the form (3).
The algorithm first identifies the query predicates
that have instantiated variables. Then for each of



Rewritten Query Generation(Q)

set of constants: CONS;
Π(Q) := GenerateQueryProgram(Q);
Qrew := Π(Q);
CONS := IdentifyConstants(Q);
For each P (x̄) ∈ Q do

if ({CONS ∩ x̄} 6= ∅) then
ȳ := x̄r {CONS ∩ x̄};
ȳ := GenerateFreshVariables(ȳ);
Qrew := Qrew ∧ ∀ȳGenerateAtom(P (x̄), ȳ,CONS);

end if
end for
return Qrew

Fig. 3. Algorithm for queries of the form (3)

those query atoms, the algorithm generates a corre-
sponding atom in the rewritten query. The answer to
Qrew will be yes if tuples from Wu of Π(D ,FD)
have the same values for the instantiated variables
in the query.

V. CONCLUSIONES

We presented CQA-WF, a system to compute
consistent answers to queries based in the well-
founded semantics of logic programs. The WFS
has been used as an alternative to the stable model
semantics for Datalog programs with negation. The
well-founded interpretation of logic programs can
be computed in polinomial time, then it is relevant
to use it in CQA since the high cost of CQA for
general queries and integrity constraints.

We have considered an important class of con-
junctive queries with and without projection. Our
results generalize some preliminary results obtained
in [8] for CQA (for a different kind of repair
programs).

CQA-WF is the first system that implements
repair programs under the well-founded semantics.
In [23] a more general system is presented, it works
for general integrity constraints and computes con-
sistent answers to general conjunctive queries under
the stable model semantics. Other polinomial time
systems to compute consistent answers are: (i)
Queca system [24] that implements query rewrit-
ten for conjunctive queries without projection and
works for universal integrity constraints. (ii) Hippo
system [14] that also implements query rewritten
for first conjunctive queries without projections, it is
based in graph methods, and works for FDs (at most

one per relation). (iii) ConQuer system [25] that
allows to obtain consistent answers to conjunctive
queries with projection and joins between different
database relations with respect to primary keys. We
left as a future work the comparison of CQA-WF
with the polinomial time reported systems.

The rewriting of queries we introduced corre-
sponds to the rewriting method presented in [15]
and implemented in [25]. This method works for
a more general case of conjunctive queries, the C-
Tree queries, which allow joins between different
database relations. In [15] the rewritten query is
evaluated directly on the inconsistent database in-
stance. In this manner, its answers correspond to
the consistent answers to the original query. Here,
the rewritten query filters inconsistent answers from
set Wu of the WFI of a repair program. Thus,
the rewritten query is evaluated on a subset of
the database, the portion of data that falls in Wu.
Therefore, we compute rewritten queries on small
portions of the database, instead of processing them
on the original database.

As reported in [22], the WFI of programs can
also be used to compute approximate answers to
positive Datalog queries and general ICs.

ACKNOWLEDGMENTS

Mónica Caniupán is funded by University of Bı́o-
Bı́o (Grant DIUBB 110115 2/R).

REFERENCES

[1] L. Bertossi and J. Chomicki, “Query Answering in Incon-
sistent Databases,” in Logics for Emerging Applications of
Databases, ser. Springer LNCS 1973, 2003, pp. 43–83.

[2] M. Arenas, L. Bertossi, and J. Chomicki, “Consistent
Query Answers in Inconsistent Databases,” in Proceedings
of the ACM Symposium on Principles of Database Sys-
tems(PODS’99), 1999, pp. 68–79.

[3] L. Bertossi, “Consistent Query Answering in Databases,”
ACM Sigmod Record, vol. 35, no. 2, pp. 68–76, 2006.

[4] C. H. Papadimitriou, Computational Complexity. Addison-
Wesley, 1994.

[5] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov, “Com-
plexity and expressive power of logic programming,” ACM
Comput. Surv., vol. 33, no. 3, pp. 374–425, 2001.

[6] M. Gelfond and V. Lifschitz, “Classical Negation in Logic
Programs and Disjunctive Databases,” New Generation
Computing, vol. 9, no. 3/4, pp. 365–386, 1991.

[7] T. C. Przymusinski, “Stable Semantics for Disjunctive
Programs,” New Generation Computing, vol. 9, pp. 401–
424, 1991.



[8] M. Arenas, L. Bertossi, and J. Chomicki, “Answer Sets for
Consistent Query Answering in Inconsistent Databases,”
Theory and Practice of Logic Programming, vol. 3, no.
4-5, pp. 393–424, 2003.

[9] G. Greco, S. Greco, and E. Zumpano, “A Logical Frame-
work for Querying and Repairing Inconsistent Databases,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 15, no. 6, pp. 1389–1408, 2003.

[10] P. Barceló and L. Bertossi, “Logic Programs for Querying
Inconsistent Databases,” in Proceedings of the Interna-
tional Symposium on Practical Aspects of Declarative
Languages (PADL’03), ser. Springer LNCS 2562, 2003,
pp. 208–222.

[11] P. Barceló, L. Bertossi, and L. Bravo, “Characterizing and
Computing Semantically Correct Answers from Databases
with Annotated Logic and Answer Sets,” in Semantics in
Databases, ser. Springer LNCS 2582, 2003, pp. 1–27.

[12] L. Bravo and L. Bertossi, “Semantically Correct Query
Answers in the Presence of Null Values,” in Proceedings
of the EDBT WS on Inconsistency and Incompleteness in
Databases (IIDB’06), ser. Springer LNCS 4254, 2006, pp.
336–357.

[13] T. Eiter, M. Fink, G. Greco, and D. Lembo, “Efficient Eval-
uation of Logic Programs for Querying Data Integration
Systems,” in Proceedings of the International Conference
on Logic Programming (ICLP’03), ser. Springer LNCS
2916, 2003, pp. 163–177.

[14] J. Chomicki and J. Marcinkowski, “Minimal-Change In-
tegrity Maintenance using Tuple Deletions,” Information
and Computation, vol. 197, no. 1-2, pp. 90–121, 2005.

[15] A. Fuxman and R. J. Miller, “First-order query rewriting
for inconsistent databases.” in ICDT, 2005, pp. 337–351.

[16] A. Van Gelder, K. Ross, and J. S. Schlipf, “Unfounded Sets
and Well-Founded Semantics for General Logic Programs,”
in Proceedings of the ACM Symposium on Principles of
Database Systems(PODS’88), 1988, pp. 221–230.

[17] P. R. Nicola Leone and F. Scarcello, “Disjunctive stable
models: unfounded sets, fixpoint semantics, and computa-
tion,” Inf. Comput., vol. 135, pp. 69–112, 1997.

[18] J. W. Lloyd, Foundations of logic programming; (2nd
extended ed.). Springer-Verlag New York, Inc., 1987.

[19] N. Leone, P. Rullo, and F. Scarcello, “Disjunctive stable
models: unfounded sets, fixpoint semantics, and computa-
tion,” Inf. Comput., vol. 135, no. 2, pp. 69–112, 1997.

[20] T. Przymusinski, “Well-founded semantics coincides with
three-valued stable semantics,” Fundam. Inf., vol. 13, no. 4,
pp. 445–463, 1990.

[21] M. Gelfond and V. Lifschitz, “The Stable Model Semantics
for Logic Programming,” in Proceedings of the Interna-
tional Conference on Logic Programming (ICLP’88), 1988,
pp. 1070–1080.

[22] M. Caniupán, “Optimizing And Implementing Repair
Programs For Consistent Query Answering In Databases,”
Ph.D. dissertation, School of Computer Science, Carleton
University, 2007. [Online]. Available: http://www.face.
ubiobio.cl/∼mcaniupa/

[23] M. Caniupán and L. E. Bertossi, “The consistency extractor
system: Answer set programs for consistent query answer-
ing in databases,” Data Knowl. Eng., vol. 69, no. 6, pp.
545–572, 2010.

[24] A. Celle and L. Bertossi, “Querying Inconsistent
Databases: Algorithms and Implementation,” in Proceed-
ings of the First International Conference on Computa-
tional Logic. Springer-Verlag, 2000, pp. 942–956.

[25] A. Fuxman, E. Fazli, and R. J. Miller, “ConQuer: Efficient
Management of Inconsistent Databases,” in Proceedings
of the 2005 ACM SIGMOD international conference on
Management of data, 2005, pp. 155–166.


