
Efficient Algorithms for Repairing Inconsistent
Dimensions in Data Warehouses

Raúl Arredondo
Universidad del Bío-Bío

Concepción, Chile
rarredon@ubiobio.cl

Mónica Caniupán
Universidad del Bío-Bío

Concepción, Chile
mcaniupa@ubiobio.cl

Abstract—Dimensions in Data Warehouses (DWs) are usually
modeled as a hierarchical set of categories called the dimension
schema. To guarantee summarizability, this is, the capability of
using pre-computed answers at lower levels to compute answers
at higher levels, a dimension is required to be strict and covering,
meaning that every element of the dimension must be connected
to a unique ancestor in each of its ancestor categories. In practice,
rollup relations of dimensions need to be reclassified to correct
errors or to adapt the data to changes. After these operations the
dimension may become non-strict. A minimal r-repair is a new
dimension that is strict and covering, is obtained from the original
dimension through a minimum number of changes, and keeps
the set of reclassifications. In the general case finding an r-repair
for a dimension is NP-complete. We present efficient polynomial
time algorithms to compute a single r-repair for dimensions that
contain one conflicting level and become inconsistent after one
reclassification of elements.

I. INTRODUCTION

Data Warehouses (DWs) integrate data from different
sources, also keeping their history for analysis and decision
support. DWs represent data according to dimensions and
facts. The former are modeled as hierarchies of sets of
elements, where each element belongs to a category from
a hierarchy schema. The facts correspond to events which
are usually associated to numeric values known as measures,
and are referenced using the dimension elements. As an
illustration, Figure 1(a) shows the hierarchy schema of a
Football Players dimension. Figure 1(b) shows the elements
and their rollup relations. Here, CONM (that stands for Con-
mebol) and UEFA are elements of the category Confederation,
LCh (Chilean league) and PL (Premier league) are elements
of League, UC (Universidad Católica) and MU (Manchester
United) are elements of Team, Chi (Chile) and Eng (England)
are elements of the category Country, and finally Castillo,
Toselli, and Rooney are elements of Player. The hierarchical
structure of dimensions allows the computation of queries at
different levels of granularity, for instance, for the dimension
in Figure 1(b) it is easy to compute queries grouped by Player,
League, Confederation and so on. It is a common practice
in DWs to use pre-computed results at lower levels of the
hierarchy to compute results at higher levels. This capability is
called summarizability [1], [2]. To guarantee summarizability,
a dimension must satisfy some constraints. First, it must
be strict, that is, every element of a category should reach

(i.e., roll-up to) no more that one element in each ancestor
category. Second, the dimension must be covering, which
means that every element of a dimension category rolls-up
to some element in every ancestor category. The dimension
in Figure 1(b) is strict and covering. Strictness and covering
constraints can enforce these properties in dimensions [1], [3].
It has been shown that dimensions need to be updated to adapt
to changes in data sources or even to correct errors [4]. Since,
current commercial DW systems do not enforce strictness, a
dimension may become inconsistent with respect to its con-
straints after updates operations. Thus, ensuring consistency
of dimensions is crucial for efficient query answering. As an
illustration, suppose that in the dimension in Figure 1(b), the
player Castillo is now going to play in MU instead of in UC.
The DW administration must perform a Reclassification of
edges. After this update, the dimension violates the strictness
constraint Player→Confederation, that establishes that a player
must be associated with a unique confederation, since now the
player Castillo goes to two different elements in Confederation,
it reaches CONM via Chi in the Country category, and UEFA
through element MU in the Team category (see Figure 1(c)).
To fix this problem, the dimension needs to be corrected.

A minimal r-repair for a dimension D is a new dimension
that is obtained from D by performing a minimum number
of insertions and deletions of edges between elements, and
keeps the reclassifications [5]. Dimension in Figure 1(d) is an
r-repair for the inconsistent dimension in Figure 1(c). It was
obtained by deleting the edge (Castillo,Chi) and inserting edge
(Castillo,Eng). In [5] it was shown that in the general case,
finding a minimal r-repair is NP-hard. However, under certain
conditions computing r-repairs can be done in polynomial
time.

II. COMPUTING R-REPAIRS

We present algorithms to compute r-repairs in polynomial
time for the class of dimensions with at most one conflict-
ing level [4]. Intuitively, a dimension that can lead to non-
strict paths, as the football player dimension where the single
conflicting category is Confederation. Dimensions become
inconsistent with respect to strictness after one reclassification
of edges. The algorithms follow two heuristics such that the
distance between the r-repair obtained and the minimal r-
repair is bound. The first heuristics ensures that when choosing
a repair operation we do not generate new non-strict paths.



All

Confederation

League

Team

Country

Player

all

CONM UEFA

LCh PL

UC MU

Chi Eng

RooneyToselliCastillo

all

CONM UEFA

LCh PL

UC MU

Chi Eng

RooneyToselliCastillo

all

CONM UEFA

LCh PL

UC MU

Chi Eng

RooneyToselliCastillo

(a) Players dimension hierarchy (b) Elements and rollup relations (c) Inconsistent dimension D (d) r-repair D′ for dimension D

Fig. 1. Football Players Dimension

The second heuristics is aimed at guaranteeing that at each
step the algorithm chooses a repair operation that requires the
least number of changes.

Algorithm 1 receives as input the conflicting category
(CatCL), the inconsistent dimension D and the reclassifica-
tion of edges R that left the dimension inconsistent. It first
gets all the inconsistent paths (from the bottom category to
the conflicting category), and for all of them, the old and new
parent in the conflicting category, this is, the parents before and
after the reclassification. Then, for each inconsistent element,
the algorithm obtains the number of paths that rollup to
the new parent and the number of paths that reach the old
parent in the conflicting category. Then, in order to follow the
second heuristics, for every inconsistent element, the following
decisions are taken: (i) if there is an equal number of paths
reaching the old and the new parent in the conflicting category,
the algorithm tries to keep the new parent in that category
(line 1.5). (ii) If the number of paths that reach the old parent
is greater than the number of paths that rollup to the new
parent, the algorithm tries to restore consistency by performing
reclassifications of edges in such a way that the inconsistent
paths reach the old parent (line 1.8). It can be shown that the
algorithm does not remove the reclassification that produces
the inconsistency, and that always finds a way to restore
consistency. As an illustration, for the inconsistent dimension
in Figure 1(c) the inconsistent paths are Castillo-MU-PL-UEFA
and Castillo-Chi-CONM, in this case, the number of paths that
reach the new (UEFA) and old parent (CONM) in Confederation
is equal, then the algorithm tries to restore consistency by
assigning to the second path the element UEFA in category
Confederation. In this case, it is not possible to change the
parent of Chi to UEFA since this reclassification will produce
new inconsistencies. Then, the algorithm tries to change the
parent of element Castillo to Eng in the category Country.
Since, this change does not produce new inconsistencies, and
the edge (Castillo,Chi) is not involve in the reclassification, the
algorithm produces the r-repair in Figure 1(d).

We perform experiments in a Linux machine with Debian
7.1 operative system 64 bits, with 8 GB of RAM, 640 GB of
hard disk and an Intel core i5 processor of 2.4 Ghz. We use an
hierarchy schema that encode the Chilean’s phone system, with
bottom category Number that goes to AreaCode and to City,

and the latter goes to Region, which reaches All. The category
Number has 2000000 elements (phone numbers), there are 346
elements in City, 27 elements in AreaCode, and 15 elements
in Region. We perform certain reclassifications that change the
area code to a different region and produce different levels of
inconsistencies. The performance of the algorithm can be see
in Figure 2 where we consider until 10% of inconsistencies
which is a high level of dirty data.

Algorithm 1: Computation of r-repairs()
Input: CatCL,D, R
Output: r-repair D′

1.1 inconsistents_paths← get_Inconsistent_paths(CatCL,D);
1.2 newfather← Find_new_father(Inconsistents_paths, R);
1.3 oldfather← Find_old_father(Inconsistents_paths, newfather);
1.4 while Inconsistents_paths 6= NULL do
1.5 if paths_father(newfather) = paths_father(oldfather) OR flag=0 then
1.6 aux_path← inconsistents_paths;
1.7 flag = find_repair(aux_path,new_father,old_father);
1.8 if paths_father(oldfather) > paths_father(newfather) OR flag=0 then
1.9 aux_path← inconsistents_paths;

1.10 flag = find_repair(aux_path,old_father,new_father);
1.11 if flag 6= 0 then
1.12 flag← 0;
1.13 for i← 1 to child_number do
1.14 Inconsistents_paths← Inconsistents_paths→ next;

Fig. 2. Performance of the algorithm to compute an r-repair

REFERENCES

[1] C. Hurtado, C. Gutierrez, and A. Mendelzon, “Capturing Summarizability
with Integrity Constraints in OLAP,” ACM Transactions on Database
Systems, vol. 30, no. 3, pp. 854–886, 2005.

[2] H.-J. Lenz and A. Shoshani, “Summarizability in OLAP and Statistical
Data Bases,” in SSDBM’97, 1997, pp. 132–143.

[3] M. Caniupán, L. Bravo, and C. A. Hurtado, “Repairing inconsistent
dimensions in data warehouses,” Data Knowl. Eng., vol. 79-80, pp. 17–
39, 2012.

[4] C. Hurtado, A. Mendelzon, and A. Vaisman, “Updating OLAP Dimen-
sions,” in DOLAP’99, 1999, pp. 60–66.

[5] M. Caniupán and A. Vaisman, “Repairing Dimension Hierarchies under
Inconsistent Reclassification,” in MOREBI’11, ser. Springer LNCS 6999,
2011, pp. 75–85.


